作物杂志,2024, 第4期: 203–208 doi: 10.16035/j.issn.1001-7283.2024.04.026

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同栽培条件对水稻籽粒镉含量及主要性状的影响研究

李虎(), 吴子帅, 刘广林, 罗群昌, 陈传华(), 朱其南   

  1. 广西农业科学院水稻研究所/广西水稻遗传育种重点实验室/广西水稻优质化育种研究人才小高地,530007,广西南宁
  • 收稿日期:2023-03-03 修回日期:2023-05-04 出版日期:2024-08-15 发布日期:2024-08-14
  • 通讯作者: 陈传华,主要从事水稻优质高产品种选育与栽培研究,E-mail:chenchuanhua@gxaas.net
  • 作者简介:李虎,主要从事重金属低积累水稻育种与栽培研究,E-mail:116523094@qq.com
  • 基金资助:
    广西科技重大专项(桂科AA22068087-6);广西水稻遗传育种重点实验室自主创新课题(2022-36-Z01-ZZ11);广西水稻遗传育种重点实验室自主创新课题(2022-36-Z01-ZZ01);广西农业科学院基本科研业务专项(桂农科2023YM64)

Effects of Different Cultivation Conditions on Cadmium Content of Grains and Main Characteristics in Rice

Li Hu(), Wu Zishuai, Liu Guanglin, Luo Qunchang, Chen Chuanhua(), Zhu Qinan   

  1. Rice Research Institute, Guangxi Academy of Agricultural Sciences / Guangxi Key Laboratory of Rice Genetics and Breeding / Guangxi Talent Highland of High Quality Rice Breeding Research, Nanning 530007, Guangxi, China
  • Received:2023-03-03 Revised:2023-05-04 Online:2024-08-15 Published:2024-08-14

摘要:

为筛选高效低成本降镉栽培措施,以2份水稻低镉准品种(V1、V2)为试验材料,设空白(A0)、淹水(A1)、喷施锌肥+淹水(A2)、施生石灰+淹水(A3)、喷施锌肥+施生石灰+淹水(A4)5个栽培处理,分析各处理对材料农艺性状和精米镉含量的影响。结果表明,除V2材料晚稻A1和A2处理出现镉超标情况外,其他降镉处理镉含量均合格。V1材料晚稻A3处理对精米率、有效穗数和产量呈负向影响,V2材料晚稻A3处理对长宽比和蛋白质含量呈负向影响,A4处理对垩白粒率、垩白度呈负向影响,其他处理负向效果不显著。综合来看,V1、V2早稻和V1晚稻选用A1处理,V2晚稻选用A3处理,成本相对较低,精米镉含量不超标,对产量、米质影响较小,综合效果最优。V1、V2可在审定后搭配降镉栽培技术在广西中度镉污染稻田推广应用。

关键词: 水稻, 镉低积累, 降镉措施, 精米镉含量, 农艺性状

Abstract:

In order to screen effective and low-cost cultivation measures for cadmium reduction, five treatments were set, including blank (A0), waterflooding (A1), zinc fertilizer + waterflooding (A2), lime + waterflooding (A3), and zinc fertilizer + lime + waterflooding (A4), using two sub-varieties of rice (V1, V2) with low cadmium as experimental materials. The effects of various measures on the agronomic traits and cadmium content of milled rice were analyzed. The results showed that except for excessive cadmium levels in V2 late rice A1 and A2 treatments, other cadmium reduction treatments had qualified cadmium content. The V1 material late rice A3 treatment had negative effects on the milled rice rate, effective panicle number, and yield. The V2 material late rice A3 treatment had negative effects on the aspect ratio and protein content. The A4 treatment had a negative effect on the chalky grain rate and chalkiness, while the negative effects of other treatments were not significant. Overall, when V1, V2 early rice and V1 late rice were treated with A1, V2 late rice was treated with A3, the cost was relatively low, and the cadmium content in polished rice did not exceed the standard. The impact on yield and rice quality indicators was relatively small, resulting in the best overall effect. After approval, V1 and V2 can be combined with supporting cadmium reduction cultivation techniques to promote and apply in moderately cadmium polluted rice fields in Guangxi.

Key words: Rice, Low accumulation of cadmium, Cadmium reduction measures, Cd content in milled rice, Agronomic traits

图1

不同栽培条件精米镉含量 不同小、大写字母分别表示处理间差异显著(P < 0.05)和极显著(P < 0.01)。

表1

不同栽培条件材料米质主要指标

材料
Material
季别
Season
处理
Treatment
糙米率
Brown rice
rate (%)
精米率
Milled rice
rate (%)
长宽比
Length-
width ratio
粒长
Grain
length (cm)
垩白粒率
Chalkiness
rate (%)
垩白度
Chalkiness
degree (%)
透明度
Transparency
蛋白质含量
Protein
content (%)
直链淀粉含量
Amylose
content (%)
V1 早稻 A0 79.44a 65.67a 2.24a 5.24b 20.00a 6.18a 1.75a 8.28ab 21.13a
A1 80.54a 66.28a 2.24a 5.27ab 21.00a 7.37a 2.00a 8.23b 21.18a
A2 79.97a 66.81a 2.25a 5.25ab 23.75a 8.62a 1.75a 8.55a 21.08a
A3 79.85a 66.03a 2.24a 5.29a 20.25a 6.84a 1.50a 8.25ab 20.58a
A4 80.06a 66.50a 2.24a 5.28ab 19.50a 6.60a 1.75a 8.38ab 20.85a
晚稻 A0 82.86a 70.35a 2.19a 5.08a 9.69ab 3.04a 1.00a 8.35aA 15.03ab
A1 82.10a 69.29ab 2.20a 5.14a 10.45ab 3.38a 1.00a 8.15bcAB 16.65a
A2 82.77a 69.18ab 2.15a 5.02a 8.32b 2.52a 1.00a 8.23abAB 15.73ab
A3 82.84a 68.42b 2.14a 5.03a 10.29ab 2.80a 1.00a 8.03cB 14.25b
A4 82.39a 69.92ab 2.16a 5.05a 10.48a 3.15a 1.00a 8.15bcAB 16.15ab
V2 早稻 A0 80.31a 66.70a 3.33a 6.06a 7.75a 1.72a 1.00a 7.73a 14.18abcAB
A1 79.89a 63.78a 3.35a 6.16a 5.50ab 1.23a 1.25a 7.65a 14.03bcAB
A2 80.34a 64.61a 3.39a 6.13a 6.50ab 1.28a 1.00a 7.83a 13.58cB
A3 79.83a 64.56a 3.43a 6.23a 5.50ab 1.05a 1.00a 7.65a 14.68abA
A4 80.14a 64.90a 3.44a 6.25a 4.00b 0.88a 1.00a 7.80a 14.80aA
晚稻 A0 79.20bB 67.84a 3.56aA 6.15aA 2.49bB 0.46b 1.00a 8.93aA 10.85ab
A1 81.22aA 67.68a 3.39bB 5.80bB 3.56abAB 0.69ab 1.00a 8.78aAB 10.18b
A2 81.03aA 67.08a 3.43bAB 5.91bAB 3.78abAB 0.80ab 1.00a 8.85aA 11.33ab
A3 80.46abAB 65.96a 3.41bAB 5.98abAB 3.88abAB 0.78ab 1.00a 8.48bB 12.30a
A4 80.30abAB 67.68a 3.55aA 6.16aA 4.99aA 0.96a 1.00a 8.70abAB 11.25ab

表2

产量等农艺性状表现

材料
Material
季别
Season
处理
Treatment
千粒重
1000-grain
weight (g)
有效穗数
Effective panicle
number
穗粒数
Grain numbers
per panicle
结实率
Seed-setting
rate (%)
株高
Plant height
(cm)
穗长
Panicle length
(cm)
产量
Yield
(kg/hm2)
V1 早稻 A0 22.38abAB 4.85a 216.09a 75.35ab 121.00a 23.82a 6670.17a
A1 22.37abAB 5.13a 227.64a 74.74ab 123.48a 23.44a 6620.65a
A2 22.38abAB 4.90a 246.51a 72.30b 123.55a 23.71a 6536.61a
A3 21.87bB 4.30a 246.06a 75.97ab 122.38a 23.74a 6307.02a
A4 22.89aA 5.28a 248.69a 79.79a 123.38a 24.07a 6227.49a
晚稻 A0 23.13a 3.93a 285.69ab 80.34ab 105.28abAB 23.17a 6330.13a
A1 22.90a 3.75ab 264.01b 74.85b 107.40aA 23.09a 5938.03ab
A2 23.30a 3.95a 294.43ab 83.60a 106.90aAB 23.07a 6260.65a
A3 23.22a 3.30b 284.94ab 84.03a 103.73bB 22.61a 5623.05b
A4 23.02a 3.65ab 322.84a 79.98ab 106.54aAB 23.29a 5908.76ab
V2 早稻 A0 20.43a 7.40abAB 140.28bB 89.20a 134.34ab 25.87ab 6224.49b
A1 20.21a 7.98aA 141.56bB 88.40a 135.13a 25.27b 7006.30a
A2 19.97a 6.83bAB 164.85aAB 91.21a 134.08ab 26.49ab 6515.61ab
A3 20.18a 6.48bB 160.75abAB 88.06a 132.90b 26.41ab 6200.48b
A4 20.25a 7.48abAB 174.14aA 90.07a 133.43ab 26.55a 6665.67ab
晚稻 A0 17.93bcAB 6.90ab 161.65a 69.44ab 108.70a 24.73a 4042.62
A1 17.63bcB 7.20a 165.19a 65.18b 107.38a 24.58a 4228.99
A2 17.58cB 5.73b 182.01a 70.26ab 108.34a 24.53a 4509.45
A3 18.93aA 5.55b 156.85a 74.09a 106.75a 23.75a 4290.82
A4 18.49abAB 6.10ab 171.67a 66.06b 106.74a 24.05a 3983.04
[1] 朱凰榕, 陈亚刚, 李媛媛, 等. 改性膨润土钝化土壤Cd对不同水稻品种安全生产研究. 安徽农业科学, 2015, 43(16):96-99,123.
[2] 邓齐玉, 赵银军, 林清, 等. 广西重金属镉的区域性分布特征与土壤污染状况评价. 环境工程, 2019, 37(1):164-171,92.
[3] Sui F Q, Chang J D, Tang Z, et al. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant Soil, 2018, 433:377-389.
[4] 陈桂芬, 雷静, 黄雁飞, 等. 广西稻田镉污染状况及硅对稻米镉的消减作用. 南方农业学报, 2015, 46(5):772-776.
[5] 林华, 张学洪, 梁延鹏, 等. 复合污染下Cu、Cr、Ni和Cd在水稻植株中的富集特征. 生态环境学报, 2014, 23(12):1991-1995.
[6] 邓新, 温璐璐, 迟鑫姝. 镉对人体健康危害及防治研究进展. 中国医疗前沿, 2010, 5(10):4-5.
[7] 胡婉茵, 王寅, 吴殿星, 等. 低镉水稻研究进展. 核农学报, 2021, 35(1):93-102.
doi: 10.11869/j.issn.100-8551.2021.01.0093
[8] 张玉烛, 方宝华, 滕振宁, 等. 应急性镉低积累水稻品种筛选与验证. 湖南农业科学, 2017(12):19-25.
[9] 冯爱煊, 贺红周, 李娜, 等. 基于多目标元素的重金属低累积水稻品种筛选及其吸收转运特征. 农业资源与环境学报, 2020, 37(6):988-1000.
[10] 龚浩如, 邓述东, 陶曙华, 等. 湘潭市镉低积累水稻品种筛选试验. 湖南农业科学, 2016(12):18-20.
[11] 杨小粉, 吴勇俊, 张玉盛, 等. 水分管理对水稻镉吸收的影响. 中国稻米, 2019, 25(4):34-37.
doi: 10.3969/j.issn.1006-8082.2019.04.008
[12] 刘大锷, 郭明选, 高汉清, 等. 施用生石灰对镉污染酸性土壤中水稻镉积累的影响. 湖南农业科学, 2016(12):24-26.
[13] 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准:GB 15618-2018. 北京: 中国标准出版社, 2018.
[14] 国家卫生和计划生育委员会. 食品安全国家标准食品中镉的测定:GB 5009.15-2014. 北京: 中国标准出版社, 2014.
[15] 徐燕玲, 陈能场, 徐胜光, 等. 低镉累积水稻品种的筛选方法研究——品种与类型. 农业环境科学学报, 2009, 28(7):1346-1352.
[16] 仲维功, 杨杰, 陈志德, 等. 水稻品种及其器官对土壤重金属元素Pb、Cd、Hg、As积累的差异. 江苏农业学报, 2006, 22 (4):331-338.
[17] 邓伟, 张玉烛, 敖和军, 等. 不同镉积累型水稻品种苗期镉积累及转运变化特征. 中国稻米, 2018, 24(4):86-90.
doi: 10.3969/j.issn.1006-8082.2018.04.021
[18] Duan G L, Shao G S, Tang Z, et al. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars. Rice, 2017, 10(1):9.
doi: 10.1186/s12284-017-0149-2 pmid: 28353179
[19] 李虎, 吴子帅, 陈传华, 等. 镉低积累水稻品种筛选及其在镉超标稻田的表现评价. 南方农业学报, 2022, 53(1):96-103.
[20] 滕振宁, 张玉烛, 方宝华, 等. 秩次分析法在低镉水稻品种筛选中的应用. 中国稻米, 2017, 23(2):21-26.
doi: 10.3969/j.issn.1006-8082.2017.02.006
[21] 陈彩艳, 唐文帮. 筛选和培育镉低积累水稻品种的进展和问题探讨. 农业现代化研究, 2018, 39(6):1044-1051.
[22] Ye X X, Li H Y, Ma Y B, et al. The bioaccumulation of Cd in rice grains in paddy soils as affected and predicted by soil properties. Journal of Soils and Sediments, 2014, 14(8):1407-1416.
[23] Honma T, Ohba H, Kaneko-Kadokura A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environmental Science and Technology, 2016, 50(8):4178-4185.
doi: 10.1021/acs.est.5b05424 pmid: 26999020
[24] 张丽娜, 宗良纲, 付世景, 等. 水分管理方式对水稻在Cd污染土壤上生长及其吸收Cd的影响. 安全与环境学报, 2006, 6(5):49-52.
[25] Gao M, Zhou J, Liu H, et al. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Science of the Total Environment, 2018, 631:1100-1108.
[26] Bian R J, Chen D, Liu X Y, et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment. Ecological Engineering, 2013, 58:378-383.
[27] 胡婉茵, 王寅, 吴殿星, 等. 低镉水稻研究进展. 核农学报, 2021, 35(1):93-102.
doi: 10.11869/j.issn.100-8551.2021.01.0093
[28] Nascimento A M, Assis F A, Moraes J C, et al. Silicon application promotes rice growth and negatively affects development of Spodoptera frugiperda (JE Smith). Journal of Applied Entomology, 2018, 142(1/2):241-249.
[29] Zeng F R, Ali S, Zhang H, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 2011, 159(1):84-91.
doi: S0269-7491(10)00424-0 pmid: 20952112
[30] 孙丽娟, 秦秦, 宋科, 等. 镉污染农田土壤修复技术及安全利用方法研究进展. 生态环境学报, 2018, 27(7):1377-1386.
[1] 欧英卓, 赵晴, 顾怀应, 周宇阳, 刘长华, 孟丽君. 氯酸盐在水稻硝态氮研究中的应用现状[J]. 作物杂志, 2024, (4): 1–7
[2] 马延华, 孙德全, 李绥艳, 林红, 潘丽艳, 李东林, 范金生, 吴建忠, 杨国伟. 黑龙江省玉米地方品种主要农艺性状综合评价及优异种质资源筛选[J]. 作物杂志, 2024, (4): 103–112
[3] 袁帅, 何明娟, 崔璨, 韩羽, 喻鹏, 易镇邪. 早稻基施不同用量钙镁水滑石对湘南双季稻产量和稻米品质影响[J]. 作物杂志, 2024, (4): 113–120
[4] 袁迪, 智慧, 王海岗, 张慧, 姚琦, 梁红凯, 王君杰, 陈凌, 刁现民, 贾冠清. 我国谷子登记品种遗传多样性分析及综合评价[J]. 作物杂志, 2024, (4): 14–23
[5] 周舟, 沈炘垭, 王俊, 刘立军. 控释肥与普通尿素组合对水稻产量、氮肥利用率和米质的影响[J]. 作物杂志, 2024, (4): 180–187
[6] 李春花, 吴晗, 加央多拉, 王春龙, 王艳青, 任长忠. 播期对甜荞品种(系)农艺性状及产量的影响[J]. 作物杂志, 2024, (4): 216–222
[7] 宋全昊, 曹燕威, 金艳, 肖永贵, 宋佳静, 赵立尚, 陈杰, 白冬, 朱统泉. 50份ICARDA新引进小麦种质资源的综合评价[J]. 作物杂志, 2024, (4): 54–61
[8] 顾怀应, 胡诗钦, 赵晴, 刘长华, 孟丽君. 根际微生物增强水稻耐盐性研究进展[J]. 作物杂志, 2024, (4): 8–13
[9] 解慧芳, 魏萌涵, 宋中强, 刘金荣, 王素英, 邢璐, 王淑君, 刘海萍, 贾小平, 宋慧. 谷子主要性状主基因多基因混合遗传模型分析[J]. 作物杂志, 2024, (4): 82–89
[10] 陈洛, 朱稳, 李雯慧, 赵均良, 周玲艳, 杨武. 水稻白叶枯病抗性基因的研究及应用进展[J]. 作物杂志, 2024, (3): 1–7
[11] 包雪莲, 文峰, 金晓光, 呼瑞梅, 黄前晶, 张桂华, 齐金全, 白颖哲, 乌月汗, 白乙拉图. 蒙东粮食主产区不同谷子品种的适应性分析[J]. 作物杂志, 2024, (3): 201–206
[12] 全成哲, 李淑芳, 李鹤南, 于维, 金京花. 吉林省73份审定水稻品种的表型性状遗传多样性研究[J]. 作物杂志, 2024, (3): 64–75
[13] 刘繁超, 方淑梅, 王庆燕, 王晗昕, 牛娟娟, 梁喜龙. 不同浓度外源氨基酸对水稻秧苗生长及相关生理指标的影响[J]. 作物杂志, 2024, (2): 71–79
[14] 季平, 刘金龙, 柳浩, 匡佳丽, 叶世河, 龙莎, 杨洪涛, 彭勃, 徐晨, 刘晓龙. 抽穗期高温胁迫对不同水稻品种产量构成和品质的影响[J]. 作物杂志, 2024, (1): 117–125
[15] 王晓蕾, 张云鹤, 牟金猛, 高大鹏, 耿艳秋, 曹译文, 卢芬, 关政闻, 邵玺文, 郭丽颖. 苏打盐碱胁迫对水稻光合特性及产量的影响[J]. 作物杂志, 2024, (1): 193–203
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!