作物杂志,2024, 第4期: 263–268 doi: 10.16035/j.issn.1001-7283.2024.04.034

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

腐植酸悬浮剂对NaCl胁迫下小麦种子萌发和幼苗生长的影响

张子怡(), 王学虎, 苑莹, 沈志峰   

  1. 河北萌帮生物科技有限公司研发部,054300,河北邢台
  • 收稿日期:2023-06-16 修回日期:2023-09-15 出版日期:2024-08-15 发布日期:2024-08-14
  • 作者简介:张子怡,主要从事新型肥料研发与应用,E-mail:2630598794@qq.com
  • 基金资助:
    石家庄市厅市会商专项资金(225490590595A)

Effects of Humic Acid Suspension Agent on Seed Germination and Seedling Growth of Wheat under NaCl Stress

Zhang Ziyi(), Wang Xuehu, Yuan Ying, Shen Zhifeng   

  1. The Research and Development Department of Hebei Monband Biotech Co., Ltd., Xingtai 054300, Hebei, China
  • Received:2023-06-16 Revised:2023-09-15 Online:2024-08-15 Published:2024-08-14

摘要:

不同分子量的腐植酸具有不同的功能特性。本试验研究不同分子量腐植酸对NaCl胁迫下小麦幼苗生长的影响,以促进腐植酸资源合理开发利用。采用双层滤纸培养法,设置5个处理,分别为清水(T1)、200 mmol/L NaCl溶液(T2)、T2+腐植酸悬浮剂Ⅰ(大分子量,T3)、T2+腐植酸悬浮剂Ⅱ(中等分子量,T4)、T2+腐植酸悬浮剂Ⅲ(小分子量,T5)。结果表明,与T2处理相比,添加腐植酸均可显著降低小麦根部相对电导率,提高小麦发芽率、根长、株高、可溶性糖含量、总叶绿素含量以及过氧化物酶、超氧化物歧化酶、过氧化氢酶活性。上述指标在T3处理下分别提高17.81%、68.46%、90.63%、21.37%、19.88%、61.07%、14.59%、30.70%,T4处理下分别提高了20.12%、101.80%、80.21%、33.42%、23.39%、62.19%、39.43%、46.73%,T5处理则分别提高了21.26%、166.67%、54.17%、35.73%、24.56%、63.43%、43.60%、48.22%。综合分析表明,不同分子量腐植酸均可提高小麦的萌发率以及幼苗的抗盐能力。其中,大分子量腐植酸促进小麦叶片生长效果显著,小分子量腐植酸在促进小麦根系生长、提高植物体内抗氧化酶活性以及增强细胞膜稳定性等方面发挥了重要的作用。

关键词: 小麦, 不同分子量腐植酸, NaCl胁迫, 种子萌发, 幼苗生长特性, 抗氧化酶

Abstract:

Humic acid with different molecular weights have different functional characteristics. This experiment aimed to investigate the effects of different molecular weight humic acids on the growth of wheat seedlings under NaCl stress, which was beneficial to promoting the rational development and utilization of humic acid resources. The double-layer filter paper culture method was used in the experiment, and five treatments were set as follows: clear water (T1), 200 mmol/L NaCl solution (T2), T2+humic acid suspension I (adding high molecular weight, T3), T2+humic acid suspension II (adding medium molecular weight, T4), T2+humic acid suspension III (adding small molecular weight, T5). The results showed compared with T2 treatment, the addition of humic acid could significantly reduce the relative conductivity of wheat roots, and increase the germination percentage, root length, plant height, soluble sugar content, total chlorophyll content, and the activities of peroxidase, superoxide dismutase, and catalase of wheat. The above indicators increased by 17.81%, 68.46%, 90.63%, 21.37%, 19.88%, 61.07%, 14.59%, 30.70%, respectively in T3 treatment; in T4 treatment, increased by 20.12%, 101.80%, 80.21%, 33.42%, 23.39%, 62.19%, 39.43% and 46.73%, respectively; In T5 treatment, increased by 21.26%, 166.67%, 54.17%, 35.73%, 24.56%, 63.43%, 43.60%, 48.22%, respectively. Comprehensive analysis showed that different molecular weights of humic acid could improved the germination percentage and the salt resistance of seedlings. Among them, high molecular weight humic acid had a significant effect on promoting the growth of wheat leaves, while small molecular weight humic acid had played an important role in promoting the growth of wheat roots, improving the activity of antioxidant enzymes in plants and enhancing the stability of cell membranes.

Key words: Wheat, Humic acid with different molecular weights, NaCl stress, Seed germination, Seedling growth characteristics, Antioxidant enzyme

表1

不同分子量腐植酸悬浮剂浸种对NaCl胁迫下小麦种子萌发的影响

处理
Treatment
发芽势
Germination
potential (%)
发芽率
Germination
percentage (%)
发芽指数
Germination
index
活力指数
Vitality
index
T1 76.67±2.33a 90.00±3.00a 38.67±0.70a 174.01±3.18a
T2 34.33±4.06c 58.00±4.04c 17.12±1.39c 19.08±1.54c
T3 44.67±3.18b 68.33±1.43b 21.88±0.74b 27.83±0.95c
T4 45.21±1.53b 69.67±1.45b 22.15±1.41b 31.47±2.64b
T5 45.34±2.08b 70.33±1.86b 22.49±0.99b 47.14±2.14b

图1

不同分子量腐植酸悬浮剂浸种对NaCl胁迫下小麦根长和株高的影响 不同小写字母表示不同处理间存在显著差异(P < 0.05),下同。

图2

不同分子量腐植酸悬浮剂浸种对NaCl胁迫下小麦叶片叶绿素和可溶性糖含量的影响

图3

不同分子量腐植酸悬浮剂浸种对NaCl胁迫下小麦叶片和根相对电导率的影响

图4

不同分子量腐植酸悬浮剂浸种对NaCl胁迫下小麦叶片抗氧化酶活性的影响

表2

不同分子量腐植酸悬浮剂处理下小麦生长状态、电导率以及抗氧化酶活性的相关性分析

指标
Index
发芽势
Germination
potential
发芽率
Germination
percentage
根长
Root
length
株高
Plant
height
总叶绿素
含量
Total
chlorophyll
content
可溶性糖
含量
Soluble
sugar
content
叶片相对
电导率
Relative
conductivity
of leaf
根相对
电导率
Relative
conductivity
of root
SOD PDD CAT
发芽势Germination potential 1.000
发芽率Germination percentage 0.986** 1.000
根长Root length 0.944* 0.931* 1.000
株高Plant height 0.969** 0.919* 0.885* 1.000
总叶绿素含量Total chlorophyll content 0.651 0.0748 0.747 0.447 1.000
可溶性糖含量Soluble sugar content -0.989** -0.955* -0.914* -0.994** -0.537 1.000
叶电导率Relative conductivity of leaf -0.970** -0.996** -0.925* -0.883* -0.798 0.927* 1.000
根电导率Relative conductivity of root -0.974** -0.995** -0.909* -0.904* -0.742 0.946* 0.988** 1.000
SOD -0.642 -0.552 -0.469 -0.785 0.103 0.743 0.477 0.577 1.000
PDD -0.541 -0.413 -0.374 -0.725 0.271 0.646 0.344 0.387 0.852 1.000
CAT -0.670 -0.559 -0.504 -0.829 0.126 0.769 0.488 0.552 0.949* 0.967** 1.000
[1] Xu Z S, Chen X J, Lu X P, et al. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Plant Physiology and Biochemistry, 2021, 160:315-328.
[2] Kaushal S S. Increased salinization decreases safe drinking water. Environmental Science & Technology, 2016, 50(6):2765-2766.
[3] Hatami E, Shokouhian A A, Ghanbari A R, et al. Alleviating salt stress in almond rootstocks using of humic acid. Scientia Horticulturae, 2018, 237:296-302.
[4] Zou P, Yang X, Yuan Y, et al. Purification and characterization of a fucoidan from the brown algae Macrocystis pyrifera and the activity of enhancing salt-stress tolerance of wheat seedlings. International Journal of Biological Macromolecules, 2021, 180:547-558.
[5] Wang H, Wu Z, Chen C, et al. Effects of salt and alkali stresses on growth and ion balance in rice (Oryza sativa L.). Plant Soil and Environment, 2011, 57(6):286-294.
[6] 张亮, 李玉婷, 夏文静, 等. 盐胁迫下异甜菊醇浸种对油菜种子萌发和幼苗生长的影响. 福建农业学报, 2020, 35(8):883-890.
[7] 宋海燕, 尹友谊, 宋建中. 不同来源腐植酸的化学组成与结构研究. 华南师范大学学报, 2009, 41(1):61-66.
[8] Zhang X, Schmidt R E. Hormone-containing products' impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Science, 2000, 40(5):1344-1349.
[9] Aydin A, Kant C, Turan M. Humic acid application alleviates salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agricultural Research, 2012, 7:1073-1086.
[10] Canellas L P, Olivares F L, Aguiar N O, et al. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 2015, 196:15-27.
[11] 张水勤, 袁亮, 林治安, 等. 腐植酸促进植物生长的机理研究进展. 植物营养与肥料学报, 2017, 23(4):1065-1076.
[12] 谷端银, 王秀峰, 魏珉, 等. 腐植酸类物质与植物抗逆性研究进展. 山东农业大学学报, 2016, 47(3):321-326.
[13] 吴洪燕, 吴钦泉, 杨越超, 等. 不同分子量腐植酸组分对小麦幼苗和油菜生长的影响. 腐植酸, 2020(6):51-55.
[14] 周丽平, 袁亮, 赵秉强, 等. 不同分子量风化煤腐植酸对玉米植株主要代谢物的影响. 植物营养与肥料学报, 2019, 25(1):142-148.
[15] 梁媛媛, 王泽平, 史秋哲, 等. 不同分子量黄腐酸对冬小麦生长和养分吸收利用的影响. 植物营养与肥料学报, 2023, 29 (2):308-322.
[16] 段才绪, 何平, 谢英赞, 等. 盐胁迫对决明种子萌发和幼苗生理特性的影响. 西南师范大学学报, 2013, 38(2):73-78.
[17] 张艳, 彭燕, 何小双. 甜菜碱浸种对干旱胁迫下白三叶种子萌发特性的影响. 中国草地学报, 2014, 36(4):31-37.
[18] 徐新娟, 李勇超. 2种植物相对电导率测定方法比较. 江苏农业科学, 2014, 42(7):311-312.
[19] 刘凯月, 郭玉洁, 刘冬云. 干旱和盐胁迫对3种地被植物种子萌发特性的影响. 林业与生态科学, 2018, 33(1):88-92.
[20] 乔佩, 卢存福, 卢骁, 等. 盐胁迫对诱变小麦种子萌发及幼苗生理特性的影响. 中国生态农业学报, 2013, 21(6):720-727.
[21] Yu L L, Liu Y, Peng Y, et al. Overexpression of cyanoalanine synthase 1 improves germinability of tobacco seeds under salt stress conditions. Environmental and Experimental Botany, 2021, 182:1-9.
[22] 马太光, 张瑞腾, 郭秀霞, 等. NaCl胁迫下腐植酸对黄瓜种子发芽特性的影响. 湖北农业科学, 2016, 55(9):2287-2289.
[23] Qian S, Ding W M, Li Y C, et al. Characterization of humic acids derived from Leonardite using a solid-state NMR spectroscopy and effects of Humic acids on growth and nutrient uptake of snap bean. Chemical Speciation and Bioavailability, 2015, 27(4):156-161.
[24] 张小冰, 邢勇, 郭乐, 等. 腐植酸钾浸种对干旱胁迫下玉米幼苗保护酶活性及MDA含量的影响. 中国农学通报, 2011, 27 (7):69-72.
[25] Akladious S A, Mohamed H A. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Scientia Horticulturae, 2018, 236(7):244-250.
[26] Fahad S, Hussain S, Matloob A, et al. Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation, 2014, 75(2):391-404.
[27] 张丽, 牛雪飞, 郭栋, 等. 盐胁迫下草麻黄电阻抗图谱参数的变化及离子平衡机制. 核农学报, 2019, 33(6):1208-1216.
doi: 10.11869/j.issn.100-8551.2019.06.1208
[28] 刘本帅, 于立河, 于崧, 等. 中性盐和碱性盐胁迫对芸豆可溶性糖及钾钠离子含量的影响. 黑龙江八一农垦大学学报, 2022, 34(1):13-17.
[1] 宋全昊, 曹燕威, 金艳, 肖永贵, 宋佳静, 赵立尚, 陈杰, 白冬, 朱统泉. 50份ICARDA新引进小麦种质资源的综合评价[J]. 作物杂志, 2024, (4): 54–61
[2] 闫金龙, 张东旭, 冯丽云, 邬志远, 李翊娟, 张俊灵. 晋东南小麦品种(系)部分抗病基因的KASP标记检测[J]. 作物杂志, 2024, (4): 90–95
[3] 李菡, 赵玉雪, 周小可, 李云, 郭振清, 王健, 韩玉翠, 林小虎. 模拟海水胁迫对小麦萌发的影响[J]. 作物杂志, 2024, (4): 96–102
[4] 张素瑜, 岳俊芹, 李向东, 靳海洋, 任德超, 杨明达, 邵运辉, 王汉芳, 方保停, 张德奇, 时艳华, 秦峰, 程红建. 施氮对郑麦366光合速率、花后干物质积累及产量的影响[J]. 作物杂志, 2024, (3): 127–132
[5] 薛鑫雨, 詹文博, 陈新宜, 周瑞祥, 王永霞, 薛瑞丽, 李华, 汪月霞, 李艳. 灌浆期干旱胁迫对不同小麦品种的生理性状与根系生长的影响[J]. 作物杂志, 2024, (3): 192–200
[6] 孙辉, 赵昌平, 岳洁茹, 白秀成, 杨吉芳, 叶志杰, 张风廷. 不同生态环境和日温差对BS型小麦光温敏雄性不育系育性转换和农艺性状的影响[J]. 作物杂志, 2024, (3): 40–46
[7] 孙通, 杨玉双, 马瑞琦, 朱英杰, 常旭虹, 董志强, 赵广才. 聚糠萘合剂和乙矮合剂对小麦抗倒伏能力、产量与品质的影响[J]. 作物杂志, 2024, (2): 113–121
[8] 徐哲莉, 朱伟旗, 王立涛, 史峰, 韦志英, 王丽娜, 邱红伟, 张晓英, 李辉利. 灌水及叶面施氮对晚播小麦产量、品质及光合特性的影响[J]. 作物杂志, 2024, (2): 139–147
[9] 赵广才. 北方冬麦区小麦苗情分析及春季管理技术建议[J]. 作物杂志, 2024, (2): 255–260
[10] 罗晓颖, 房彦飞, 胡冬平, 唐江华, 徐文修, 王怀港. 播种方式和播量对干旱区旱地小麦土壤水分利用及产量的影响[J]. 作物杂志, 2024, (2): 97–104
[11] 刘红杰, 任德超, 葛君, 张素瑜, 吕国华, 何勋. 积温和播种密度对小麦越冬前生长状况的影响[J]. 作物杂志, 2024, (1): 141–147
[12] 刘哲文, 郭丹丹, 常旭虹, 王德梅, 杨玉双, 刘希伟, 王玉娇, 石书兵, 王艳杰, 赵广才. 氮肥追施时期和比例对强筋小麦籽粒灌浆及其生理机制的影响[J]. 作物杂志, 2024, (1): 174–179
[13] 郝小聪, 李欣宇, 侯起岭, 杨吉芳, 安春会, 王长华, 叶志杰, 张风廷. 施氮量对二系杂交小麦品质的影响[J]. 作物杂志, 2024, (1): 187–192
[14] 吕宝莲, 杨宇昕, 崔立操, 史峰, 马亮, 孔秀英, 张立超, 倪志勇. 小麦bHLH家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J]. 作物杂志, 2024, (1): 65–72
[15] 章蓉, 姜恩熙, 陈思, 余徐润, 陈刚, 冉莉萍, 熊飞. 乙烯利与1-甲基环丙烯调控小麦穗部籽粒形成的研究[J]. 作物杂志, 2023, (6): 101–107
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!