作物杂志,2025, 第1期: 15–25 doi: 10.16035/j.issn.1001-7283.2025.01.003

• 专题综述 • 上一篇    下一篇

光周期影响水稻抽穗的分子机制研究进展

徐晓征1,2(), 王建军2()   

  1. 1浙江农林大学现代农学院,311300,浙江杭州
    2浙江省农业科学院作物与核技术利用研究所,310022,浙江杭州
  • 收稿日期:2024-05-27 修回日期:2024-06-16 出版日期:2025-02-15 发布日期:2025-02-12
  • 通讯作者: 王建军,主要从事水稻遗传育种研究,E-mail:wangjj4197@163.com
  • 作者简介:徐晓征,主要从事水稻遗传育种研究,E-mail:19550178539@163.com
  • 基金资助:
    浙江省农业新品种选育专项(2021C02063-1);国家重点研发计划(2023YFD1200900)

Research Progress on Molecular Mechanism of Photoperiod Influence on Rice Heading

Xu Xiaozheng1,2(), Wang Jianjun2()   

  1. 1College of Modern Agriculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
    2Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, Zhejiang, China
  • Received:2024-05-27 Revised:2024-06-16 Online:2025-02-15 Published:2025-02-12

摘要:

抽穗期作为水稻的重要农艺性状,是决定其生长发育和产量形成的关键因素之一。光周期是影响水稻抽穗的主要环境因素,近年来,随着表观遗传修饰与环境因素交叉作用研究的不断增多,光周期调节水稻抽穗的分子机理及调控机制得到进一步完善。本文综述了光周期调节水稻抽穗的2个主要途径及其相关基因功能、表观遗传在光周期调控水稻抽穗的作用及外界因素对光周期途径的影响,为深入理解水稻抽穗的调控机理以及水稻种质改良和生产管理提供参考。

关键词: 水稻, 抽穗期, 光周期, 表观遗传

Abstract:

As an important agronomic trait of rice, heading date is one of the key factors that determine its growth and development and yield formation. Photoperiod is a major environmental factor affecting rice heading. In recent years, with the increasing of studies on the cross effects of epigenetic modification and environmental factors, the molecular mechanism and regulatory mechanism of photoperiod regulating rice heading have been further improved. In this paper, we reviewed the two main pathways of photoperiodic regulation of rice heading and the functions of related genes, the role of epigenetics in photoperiodic regulation of rice heading, and the influence of external factors on photoperiodic pathway, so as to provide references for understanding of the regulatory mechanism of rice heading, as well as the improvement and production management of rice high-yield germplasms.

Key words: Rice, Heading date, Photoperiod, Epigenetic inheritance

图1

光周期调控水稻抽穗的信号网络

表1

光周期调控水稻抽穗的主要基因与功能

基因
Gene
基因ID
Gene ID
功能
Function
路径
Pathway
参考文献
Reference
PhyA Os03g51030 光敏色素基因,短日照条件下诱导成花,长日照条件下抑制抽穗 Ehd1 [40]
PhyB Os03g19590 光敏色素基因,抑制抽穗 Ehd1 [41]
PhyC Os03g54084 光敏色素基因,抑制抽穗 Ehd1 [42]
Hd3a Os06g0157700 短日照条件下成花素基因 Hd1 [43]
RFT1 Os06g0157500 长日照条件下成花素基因 Ehd1 [44]
GI Os01g0182600 昼夜节律基因,短日照条件下促进抽穗,长日照条件下抑制抽穗 Hd1 [45]
CCA1/LHY Os08g0157600 昼夜节律基因,具有促进和延迟抽穗的双重功能 Ehd1/Hd1 [46]
LUX Os01g74020 通过招募OsELF3-1OsELF4抑制Hd1Ghd7 Ehd1/Hd1 [47]
Ehd1 Os10g0463400 长日照条件下的调控抽穗的重要整合因子 Ehd1 [33]
Ehd2 Os10g0419200 水稻成花的促进因子,调节水稻的成花转变而不影响生长速率 Ehd1/Hd1 [48]
Ehd3 Os08g0105000 水稻成花的促进因子 Ehd1 [49]
Ehd4 Os03g0112700 早穗基因,通过Ehd1上调成花素基因的表达从而促进抽穗,但独立于已知的其他Ehd1调控因子 Ehd1 [50]
Hd1 Os06g0275000 具有双重功能,短日照条件下促进抽穗,长日照条件下抑制抽穗 Hd1 [28]
Ghd7/Hd4 Os07g0261200 长日照条件下抑制抽穗,Ehd1的主要抑制因子 Ehd1 [51]
Hd17/ELF3/Ef7 Os06g0142600 长日照条件下,通过抑制Ghd7的表达,上调Ehd1的表达,从而促进抽穗 Ehd1/Hd1 [52-53]
PRR37/DTH7/ Os07g0695100 长日照条件下,抑制水稻成花素基因并正向调控Ehd1的表达,从而延迟抽穗 Ehd1/Hd1 [54]
Ghd7.1/Hd2
Ghd8/DTH8/Hd5 Os08g017450 长日照条件下,通过Ehd1介导的途径抑制抽穗 Ehd1 [55]
MADS51 Os01g0922800 成花促进因子,在短日照下参与OsGIEhd1的信号传递 Ehd1 [56]
MADS50/DTH3 Os03g0122600 长日照条件下促进成花,间接激活Ehd1的表达 Ehd1 [57]
BBX14 Os05g0204600 成花抑制因子,长日照下促进Hd1表达,作为成花抑制因子发挥作用;短日照下,作为Ehd1的抑制因子发挥作用 Ehd1/Hd1 [58]
ATG8a-d Os07g0512200,Os04g0624000,Os11g0100100 在短日照和长日照条件下,自噬功能的丧失会导致Hd1的积累并延迟抽穗 Hd1 [59]

表2

抽穗基因等位基因型的稻区适应范围

序号
Number
稻作区
Rice region
抽穗基因Heading gene
DTH2 Ehd4 Hd1 OsPRR37 Ghd8 Ghd7
1
华南双季稻稻作区(18~28° N) 弱等位型
弱等位型
强等位型或无功能等位型 无功能等位型
强等位型或无功能等位型 强等位型或无功能等位型
2
华中双季稻稻作区(25~35° N) 弱等位型或强等位型 弱等位型或强等位型 强等位型或无功能等位型 强等位型或无功能等位型 强等位型或无功能等位型 强等位型或无功能等位型
3
西南高原单双季稻稻作区(25~40° N) 强等位型
弱等位型或强等位型 强等位型或无功能等位型 强等位型或无功能等位型 强等位型或无功能等位型 强等位型或弱等位型或无功能等位型
4
华北单季稻稻作区(31~40° N) 强等位型
强等位型
强等位型或无功能等位型 强等位型无功能等位型 无功能等位型
弱等位型
5
东北早熟单季稻稻作区(38~53° N) 强等位型
强等位型
无功能等位型
无功能等位型
无功能等位型
弱等位型或无功能等位型
6
西北干燥区单季稻稻作区(35~49° N) 强等位型
强等位型
强等位型或无功能等位型 强等位型或无功能等位型 无功能等位型
弱等位型或无功能等位型
[1] 国家统计局. 国家统计局关于2024年早稻产量数据的公告. (2024-08-23) [2024-12-01]. http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202408/t20240823_1956083.html.
[2] 王红波, 董华林, 郑兴飞, 等. 水稻抽穗期的光周期调控分子机制研究进展. 北方水稻, 2020, 50(6):75-79.
[3] Vicentini G, Biancucci M, Mineri L, et al. Environmental control of rice flowering time. Plant Communications, 2023, 4(5):100610.
[4] Nemoto Y, Hori K, Izawa T. Fine-tuning of the setting of critical day length by two casein kinases in rice photoperiodic flowering. Journal of Experimental Botany, 2018, 69(3):553-565.
doi: 10.1093/jxb/erx412 pmid: 29237079
[5] 孔德艳, 陈守俊, 周立国, 等. 水稻开花光周期调控相关基因研究进展. 遗传, 2016, 38(6):532-542.
[6] 蒋丹, 洪广成, 陈倩, 等. 水稻抽穗期分子调控研究进展. 分子植物育种, 2019, 17(21):7071-7077.
[7] Sachs J. Wirkung des lichtes auf die blütenbilding unter bermittlung der laubblätter. Bot Ztg, 1865, 23:117-121.
[8] Chailakhyan M K H. Concerning the hormonal nature of plant development processes. Doklady Akademii nauk SSSR, 1937, 16:227-230.
[9] Zeevaart J A D. Transmission of the floral stimulus from a long-short-day plant, Bryophyllum daigremontianum, to the short- long-day plant Echeveria harmsii. Annals of Botany, 1982, 49(4):549-552.
[10] Kohler G D. The physiology of flower initiation in Pisum sativum. Zeitschrift für Pflanzenphysiologie, 1965, 53(5):429- 451.
[11] 袁陈, 邹伊荣, 陈佳, 等. 植物成花素FT蛋白及其互作蛋白调控植物开花的研究进展. 杭州师范大学学报(自然科学版), 2017, 16(3):278-283.
[12] Zhao C Y, Zhu M, Guo Y Y, et al. Genomic survey of PEBP gene family in rice:Identification, phylogenetic analysis, and expression profiles in organs and under abiotic stresses. Plants (Basel), 2022, 11(12):1576.
[13] Wickland D P, Hanzawa Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: Functional evolution and molecular mechanisms. Molecular Plant, 2015, 8(7):983-997.
doi: 10.1016/j.molp.2015.01.007 pmid: 25598141
[14] Tamaki S, Tsuji H, Matsumoto A, et al. FT-like proteins induce transposon silencing in the shoot apex during floral induction in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8):901-910.
[15] Reina K, Akiko I, Shojiro T, et al. Hd3a and RFT1 are essential for flowering in rice. Development, 2008, 135(4):767-774.
[16] Tamaki S, Matsuo S, Wong H L, et al. Hd3a protein is a mobile flowering signal in rice. Science, 2007, 316(5827):1033-1036.
doi: 10.1126/science.1141753 pmid: 17446351
[17] 徐千慧, 张大兵, 梁婉琪. 水稻成花素分子作用机制研究进展. 上海交通大学学报(农业科学版), 2010, 28(3):296-304.
[18] Zhu X B, Zhang D, Zhu M J, et al. The significance of florigen activation complex in controlling flowering in rice. Critical Reviews in Plant Sciences, 2023, 42(5):300-323.
[19] Peng Y L, Zou T, Li L M, et al. Map-based cloning and functional analysis of YE1 in rice, Which is involved in light-dependent chlorophyll biogenesis and photoperiodic flowering pathway. International Journal of Molecular Sciences, 2019, 20(3):758.
[20] 苏代群, 陈亮, 李锋, 等. 利用高密度遗传图谱发掘水稻抽穗期新位点. 作物杂志, 2021(6):58-61.
[21] Yamamoto T, Lin H, Sasaki T, et al. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154(2):885-891.
doi: 10.1093/genetics/154.2.885 pmid: 10655238
[22] Lin H X, Yamamoto T, Sasaki T, et al. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theoretical and Applied Genetics, 2000, 101(7):1021-1028.
[23] Monna L, Lin H X, Kojima S, et al. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theoretical and Applied Genetics, 2002, 104(5):772-778.
doi: 10.1007/s00122-001-0813-0 pmid: 12582636
[24] Matsoukas I G, Massiah A J, Thomas B. Florigenic and antiflorigenic signaling in plants. Plant and Cell Physiology, 2012, 53(11):1827-1842.
doi: 10.1093/pcp/pcs130 pmid: 23008422
[25] 魏和平, 芦涛, 贾绮玮, 等. 水稻抽穗期QTL定位及候选基因分析. 植物学报, 2022, 57(5):588-595.
doi: 10.11983/CBB22114
[26] 赵凌, 梁文化, 赵春芳, 等. 利用高密度Bin遗传图谱定位水稻抽穗期QTL. 作物学报, 2023, 49(1):119-128.
doi: 10.3724/SP.J.1006.2023.12089
[27] Putterill J, Robson F, Lee K, et al. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80(6):847-857.
doi: 10.1016/0092-8674(95)90288-0 pmid: 7697715
[28] Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell, 2000, 12(12):2473-2484.
[29] Zong W B, Guo X T, Zhang K, et al. Photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. Journal of Experimental Botany, 2024, 75(13):3760-3777.
[30] Zhang Z Y, Zhang B, Qi F X, et al. Hd1 function conversion in regulating heading is dependent on gene combinations of Ghd7, Ghd8, and Ghd7.1 under long-day conditions in rice. Molecular Breeding, 2019, 39(7):1-12.
[31] 王玉博, 王悦, 刘雄, 等. 水稻光周期调控开花的研究进展. 中国水稻科学, 2021, 35(3):207-224.
doi: 10.16819/j.1001-7216.2021.0514
[32] Fujino K. Days to heading,controlled by the heading date genes, Hd1 and DTH8, limits rice yield-related traits in Hokkaido, Japan. Breeding Science, 2020, 70(3):277-282.
doi: 10.1270/jsbbs.19151 pmid: 32714049
[33] Doi K, Izawa T, Fuse T, et al. Ehd1,a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development, 2004, 18(8):926-936.
[34] Cho L H, Yoon J, Pasriga R, et al. Homodimerization of Ehd1 is required to induce flowering in rice. Plant Physiology, 2016, 170(4):2159-2171.
[35] Sun C H, Zhang K, Zhou Y, et al. Dual function of clock component OsLHY sets critical day length for photoperiodic flowering in rice. Plant Biotechnology Journal, 2021, 19(8):1644-1657.
[36] Garner W W, Allard H A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Journal of Agricultural Research, 1920, 18:157-158.
[37] Song Y H, Shim J S, Kinmonth-Schultz H A, et al. Photoperiodic flowering: time measurement mechanisms in leaves. Annual Review of Plant Biology, 2015, 66:441-464.
doi: 10.1146/annurev-arplant-043014-115555 pmid: 25534513
[38] Shim J S, Kubota A, Imaizumi T. Circadian clock and photoperiodic flowering in Arabidopsis:CONSTANS is a hub for signal integration. Plant Physiology, 2017, 173(1):5-15.
[39] Shim J S, Jang G. Environmental signal-dependent regulation of flowering time in rice. International Journal of Molecular Sciences, 2020, 21(17):6155.
[40] Lee Y S, Yi J, An G. OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B. Plant Molecular Biology, 2016, 91(4/5):413-427.
[41] Lin X L, Huang Y P, Rao Y C, et al. A base substitution in OsphyC disturbs its interaction with OsphyB and affects flowering time and chlorophyll synthesis in rice. BMC Plant Biology, 2022, 22(1):612.
[42] Osugi A, Itoh H, Ikeda-Kawakatsu K, et al. Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiology, 2011, 157(3):1128-1137.
doi: 10.1104/pp.111.181792 pmid: 21880933
[43] Kojima S, Takahasbi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant and Cell Physiology, 2002, 43(10):1096-1105.
doi: 10.1093/pcp/pcf156 pmid: 12407188
[44] Komiya R, Yokoi S, Shimamoto K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development, 2009, 136(20):3443-3450.
doi: 10.1242/dev.040170 pmid: 19762423
[45] Lee Y S, An G. OsGI controls flowering time by modulating rhythmic flowering time regulators preferentially under short day in rice. Journal of Plant Biology, 2015, 58(2):137-145.
[46] Li C, Liu X J, Yan Y, et al. OsLHY is involved in regulating flowering through the Hd1- and Ehd1- mediated pathways in rice (Oryza sativa L.). Plant Science, 2022, 315:111145.
[47] Xu P, Zhang Y X, Wen X X, et al. The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7. Journal of Advanced Research, 2023, 48:17-31.
[48] Matsubara K, Yamanouchi U, Wang Z X, et al. Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiology, 2009, 148 (3):1425-1435.
[49] Kazuki M, Utako Y, Yasunori N, et al. Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. The Plant Journal, 2011, 66(4):603-612.
doi: 10.1111/j.1365-313X.2011.04517.x pmid: 21284756
[50] Gao H, Zheng X M, Fei G L, et al. Ehd4 Encodes a Novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genetics, 2013, 9(2):e1003281.
[51] Xue W Y, Xing Y Z, Weng X Y, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40(6):761-767.
[52] Saito H, Ogiso-Tanaka E, Okumoto Y, et al. Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions. Plant and Cell Physiology, 2012, 53(4):717-728.
[53] Kazuki M, Eri O T, Kiyosumi H, et al. Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant and Cell Physiology, 2012, 53(4):709-716.
[54] Liu X X, Liu H L, Zhang Y Y, et al. Fine-tuning Flowering Time via genome editing of upstream open reading frames of Heading Date 2 in rice. Rice, 2021, 14(1):59.
doi: 10.1186/s12284-021-00504-w pmid: 34189630
[55] Wei X J, Xu J F, Guo H N, et al. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiology, 2010, 153(4):1747-1758.
[56] Lim K S, Shinyoung L, Jung K H, et al. OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiology, 2007, 145(4):1484- 1494.
[57] Bian X F, Liu X, Zhao Z G, et al. Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down- regulating Ehd1. Plant Cell Reports, 2011, 30(12):2243-2254.
doi: 10.1007/s00299-011-1129-4 pmid: 21830130
[58] Bai B, Zhao J, Li Y P, et al. OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice. Plant Science, 2016, 247:25-34.
doi: 10.1016/j.plantsci.2016.02.017 pmid: 27095397
[59] Berger S L, Kouzarides T, Shiekhattar R, et al. An operational definition of epigenetics. Genes & Development, 2009, 23(7):781-783.
[60] Hu Z, Yang Z P, Zhang Y, et al. Autophagy targets Hd1 for vacuolar degradation to regulate rice flowering. Molecular Plant, 2022, 15(7):1137-1156.
[61] Sun K L, Huang M H, Zong W B, et al. Hd1, Ghd7, and DTH8 synergistically determine the rice heading date and yield-related agronomic traits. Journal of Genetics and Genomics, 2022, 49 (5):437-447.
[62] Hu S K, Dong G J, Xu J, et al. A point mutation in the zinc finger motif of RID1/EHD2/OsID 1 protein leads to outstanding yield- related traits in japonica rice variety Wuyunjing 7. Rice, 2013, 6(24):184.
[63] Ma Y M, Dong J F, Yang W, et al. OsFLZ2 interacts with OsMADS51 to fine-tune rice flowering time. Development, 2022, 149(24):20086.
[64] Gao H, Jin M N, Zheng X M, et al. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51):18399.
[65] Takano M, Inagaki N, Xie X, et al. Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34):14705-14710.
[66] Takano M, Inagaki N, Xie X, et al. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. The Plant Cell, 2005, 17(12):3311-3325.
[67] Zheng T H, Sun J, Zhou S R, et al. Post-transcriptional regulation of Ghd 7 protein stability by phytochrome and OsGI in photoperiodic control of flowering in rice. New Phytologist, 2019, 224(1):306-320.
[68] Johansson M, Staiger D. Time to flower: interplay between photoperiod and the circadian clock. Journal of Experimental Botany, 2015, 66(3):719-730.
doi: 10.1093/jxb/eru441 pmid: 25371508
[69] Liang L W, Zhang Z Y, Cheng N N, et al. The transcriptional repressor OsPRR73 links circadian clock and photoperiod pathway to control heading date in rice. Plant Cell and Environment, 2021, 44(3):842-855.
[70] Itoh H, Tanaka Y, Izawa T. Genetic relationship between phytochromes and OsELF3-1 reveals the mode of regulation for the suppression of phytochrome signaling in rice. Plant and Cell Physiology, 2019, 60(3):549-561.
[71] 肖军, 鲁非, 邓娴, 等. 植物基因组与表观遗传学研究进展. 植物生理学报, 2023, 59(9):1665-1693.
[72] Kondo H, Shiraya T, Wada K C, et al. Induction of flowering by DNA demethylation in Perilla frutescens and Silene armeria: Heritability of 5-azacytidine-induced effects and alteration of the DNA methylation state by photoperiodic conditions. Plant Science, 2010, 178(3):321-326.
[73] Li W X, Han Y Y, Tao F, et al. Knockdown of SAMS genes encoding S-adenosyl-L-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice. Journal of Plant Physiology, 2011, 168(15):1837-1843.
[74] 杨涛, 马小倩, 张全, 等. 组蛋白修饰在水稻中的研究进展. 中国农业科技导报, 2022, 24(4):11-20.
doi: 10.13304/j.nykjdb.2021.0497
[75] Liu K P, Yu Y, Dong A W, et al. SET DOMAIN GROUP701 encodes a H3K4-methytransferase and regulates multiple key processes of rice plant development. New Phytologist, 2017, 215(2):609-623.
[76] Liu X Y, Zhou C, Zhao Y, et al. The rice enhancer of zeste [E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time. Frontiers in Plant Science, 2014, 5:591.
[77] Wang J, Hu J, Qian Q, et al. LC2 and OsVIL 2 promote rice flowering by photoperoid-induced epigenetic silencing of OsLF. Molecular Plant, 2013, 6(2):514-527.
doi: 10.1093/mp/sss096 pmid: 22973062
[78] Jeong H J, Yang J, Cho L H, et al. OsVIL1 controls flowering time in rice by suppressing OsLF under short days and by inducing Ghd7 under long days. Plant Cell Reports, 2016, 35(4):905-920.
[79] Choi S C, Lee S, Kim S R, et al. Trithorax group protein Oryza sativa Trithorax 1 controls flowering time in rice via interaction with early heading date 3. Plant Physiology, 2014, 164(3):1326- 1337.
[80] Zhang X N, Feng Q, Miao J S, et al. The WD40 domain- containing protein Ehd5 positively regulates flowering in rice (Oryza sativa). The Plant Cell, 2023, 35(11):4002-4019.
[81] Yang Y, Fu D B, Zhu C M, et al. The RING-finger ubiquitin ligase HAF 1 mediates heading date 1 degradation during photoperiodic flowering in rice. The Plant Cell, 2015, 27(9):2455-2468.
[82] 罗明. HAF1介导DTH2泛素化降解调控水稻抽穗期的研究. 武汉:华中农业大学, 2018.
[83] Vega-Sánchez M E, Zeng L, Chen S, et al. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E 3 ubiquitin ligase SPL11, is involved in flowering time control in rice. The Plant Cell, 2008, 20(6):1456-1469.
[84] Xu Z T, Li E Z, Xue G, et al. OsHUB2 inhibits function of OsTrx1 in heading date in rice. Plant Journal, 2022, 110(6):1670-1680.
[85] Song Y L, Gao Z C, Luan W J. Interaction between temperature and photoperiod in regulation of flowering time in rice. Science China (Life Sciences), 2012, 55(3):241-249.
[86] Nagalla A D, Nishide N, Hibara K I, et al. High ambient temperatures inhibit Ghd7-Mediated flowering repression in rice. Plant and Cell Physiology, 2021, 62(11):1745-1759.
[87] Guo T T, Mu Q, Wang J Y, et al. Dynamic effects of interacting genes underlying rice flowering-time phenotypic plasticity and global adaptation. Genome Research, 2020, 30(5):673-683.
doi: 10.1101/gr.255703.119 pmid: 32299830
[88] Brambilla V, Gomez-Ariza J, Cerise M, et al. The importance of being on time: regulatory networks controlling photoperiodic flowering in cereals. Frontiers in Plant Science, 2017, 8:665.
doi: 10.3389/fpls.2017.00665 pmid: 28491078
[89] Ito T, Okada K, Fukazawa J, et al. DELLA-dependent and -independent gibberellin signaling. Plant Signaling & Behavior, 2018, 13(3):e1445933.
[90] Dai C, Xue H W. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO Journal, 2010, 29(11):1916-1927.
doi: 10.1038/emboj.2010.75 pmid: 20400938
[91] Zhang S, Deng L, Cheng R, et al. RID1 sets rice heading date by balancing its binding with SLR1 and SDG722. Journal of Integrative Plant Biology, 2022, 64(1):149-165.
doi: 10.1111/jipb.13196
[92] Tang L Q, Li G H, Wang H M, et al. Exogenous abscisic acid represses rice flowering via SAPK8-ABF1-Ehd1/Ehd2 pathway. Journal of Advanced Research, 2023, 59:35-47.
[93] Hassan M A, Ni D H, Tian H N, et al. Drought stress in rice: morpho-physiological and molecular responses and marker- assisted breeding. Fronttiers in Plant Science, 2023, 14:1215371.
[94] Galbiati F, Chiozzotto R, Locatelli F, et al. Hd3a, RFT1 and Ehd1 integrate photoperiodic and drought stress signals to delay the floral transition in rice. Plant Cell and Environment, 2016, 39(9):1982-1993.
[95] Du H, Huang F, Wu N, et al. Integrative regulation of drought escape through ABA-dependent and -independent pathways in rice. Molecular Plant, 2018, 11(4):584-597.
[96] Zhang C, Liu J, Zhao T, et al. A drought-inducible transcription factor delays reproductive timing in rice. Plant Physiology, 2016, 171(1):334-343.
doi: 10.1104/pp.16.01691 pmid: 26945049
[97] 梅方权, 吴宪章, 姚长溪, 等. 中国水稻种植区划. 中国水稻科学, 1988, 2(3):97-110.
[98] Wu W, Zheng X M, Lu G, et al. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8):2775-2780.
[99] Matsubara K, Yano M. Genetic and molecular dissection of flowering time control in rice//Rice Genomics, Genetics and Breeding. Singapore:Springer, 2018:177-190.
[100] Takahashi Y, Shimamoto K. Heading date 1 (Hd1), on ortholog of Arabidopsis CONSTANS, is a possible target of human selection during domestication to diversify flowering times of cultivated rice. Genes Genetics System, 2011, 86(3):175-182.
[101] Liu C, Song G Y, Zhou Y H, et al. OsPRR37 and Ghd7 are the major genes for general combining ability of DTH, PH and SPP in rice. Scientific Reports, 2015, 5:12803.
[102] Zhang B, Liu H Y, Qi F X, et al. Genetic interactions among Ghd7, Ghd8, OsPRR37 and Hd1 contribute to large variation in heading date in rice. Rice, 2019, 12(1):48.
doi: 10.1186/s12284-019-0314-x pmid: 31309345
[103] Song J, Tang L Q, Fan H H, et al. Enhancing yield and improving grain quality in japonica rice: Targeted EHD1 editing via CRISPR-Cas9 in low-latitude adaptation. Current Issues in Molecular Biology, 2024, 46(4):3741-3751.
doi: 10.3390/cimb46040233 pmid: 38666963
[1] 胡聪聪, 李红宇, 孙显龙, 王童, 赵海成, 范名宇, 张巩亮. 秸秆还田与氮肥运筹对寒地水稻光合特性和产量的影响[J]. 作物杂志, 2025, (1): 147–154
[2] 闫娜, 谢可冉, 高逖, 胡秋倩, 崔克辉. 增施穗氮肥缓解水稻穗分化期高温伤害的生理机制研究[J]. 作物杂志, 2025, (1): 89–98
[3] 法晓彤, 孟庆好, 王琛, 顾汉柱, 景文疆, 张耗. 水稻根系形态生理对干湿交替灌溉方式的响应研究进展[J]. 作物杂志, 2024, (6): 1–8
[4] 汪本福, 余振渊, 宋平原, 张作林, 张枝盛, 李阳, 苏章锋, 郑中春, 程建平. 土壤改良剂对低湖冷浸田土壤特性及水稻生长的影响[J]. 作物杂志, 2024, (6): 126–131
[5] 曾茜倩, 张振远, 马秀娥, 方映涵, 翟金磊, 金涛, 刘冬, 刘章勇. 硅藻土对水稻产量和氮肥利用率的影响[J]. 作物杂志, 2024, (6): 147–152
[6] 胡娅晴, 李春情, 王冠, 徐江. 水稻BR受体突变株Fn189拔节期生长发育及碳代谢分析[J]. 作物杂志, 2024, (6): 218–225
[7] 孙明茂, 刘丽霞, 孙虎, 崔迪. 水稻重组自交系群体花色苷及重要农艺性状分析[J]. 作物杂志, 2024, (6): 26–38
[8] 孙家猛, 高原, 陈虎, 花芹, 林泉祥, 陈庆全, 李金才, 张海涛. 水稻胚乳突变体cse-2的表型分析及基因定位[J]. 作物杂志, 2024, (5): 1–7
[9] 田琴琴, 卓乐, 陈娜娜, 郑德超, 吴小京, 喻鹏, 陈平平, 易镇邪. 钙镁水滑石施用方式对双季稻糙米镉含量与土壤特性的影响[J]. 作物杂志, 2024, (5): 131–139
[10] 欧英卓, 赵晴, 顾怀应, 周宇阳, 刘长华, 孟丽君. 氯酸盐在水稻硝态氮研究中的应用现状[J]. 作物杂志, 2024, (4): 1–7
[11] 袁帅, 何明娟, 崔璨, 韩羽, 喻鹏, 易镇邪. 早稻基施不同用量钙镁水滑石对湘南双季稻产量和稻米品质影响[J]. 作物杂志, 2024, (4): 113–120
[12] 周舟, 沈炘垭, 王俊, 刘立军. 控释肥与普通尿素组合对水稻产量、氮肥利用率和米质的影响[J]. 作物杂志, 2024, (4): 180–187
[13] 李虎, 吴子帅, 刘广林, 罗群昌, 陈传华, 朱其南. 不同栽培条件对水稻籽粒镉含量及主要性状的影响研究[J]. 作物杂志, 2024, (4): 203–208
[14] 顾怀应, 胡诗钦, 赵晴, 刘长华, 孟丽君. 根际微生物增强水稻耐盐性研究进展[J]. 作物杂志, 2024, (4): 8–13
[15] 陈洛, 朱稳, 李雯慧, 赵均良, 周玲艳, 杨武. 水稻白叶枯病抗性基因的研究及应用进展[J]. 作物杂志, 2024, (3): 1–7
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!