作物杂志,2024, 第5期: 1–7 doi: 10.16035/j.issn.1001-7283.2024.05.001

• 遗传育种·种质资源·生物技术 •    下一篇

水稻胚乳突变体cse-2的表型分析及基因定位

孙家猛(), 高原, 陈虎, 花芹, 林泉祥, 陈庆全, 李金才, 张海涛()   

  1. 安徽农业大学农学院,230036,安徽合肥
  • 收稿日期:2023-06-24 修回日期:2023-08-12 出版日期:2024-10-15 发布日期:2024-10-16
  • 通讯作者: 张海涛,研究方向为作物遗传育种,E-mail:43647174@qq.com
  • 作者简介:孙家猛,研究方向为作物遗传育种,E-mail:1596038203@qq.com
  • 基金资助:
    “十四五”国家重点研发计划(2022YFF1002903);国家自然科学基金项目(31871603)

Phenotypic Analysis and Gene Mapping of Rice Mutant Chalkiness and Shrunken Endosperm-2

Sun Jiameng(), Gao Yuan, Chen Hu, Hua Qin, Lin Quanxiang, Chen Qingquan, Li Jincai, Zhang Haitao()   

  1. College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
  • Received:2023-06-24 Revised:2023-08-12 Online:2024-10-15 Published:2024-10-16

摘要:

淀粉是水稻籽粒中含量最多的大分子物质,其组分及含量对于稻米的各项品质指标均有直接影响。本研究鉴定了1个新的粉质胚乳突变体(chalkiness and shrunken endosperm-2cse-2),分析了突变体的农艺和品质相关性状,并对其开展了基因定位。结果表明,与野生型相比,突变体的株高、穗粒数和结实率等农艺性状以及淀粉含量、淀粉组分比例、淀粉粒形态结构、蛋白质含量、脂肪酸含量等品质性状均发生了显著变化。遗传分析表明,突变性状是由位于4号染色体上的1对隐性核基因控制。序列分析表明,精细定位区间内LOC_Os04g55230/FLO2基因第6064位碱基胞嘧啶(C)突变为胸腺嘧啶(T),形成TAA无义突变。以上结果证明,cse-2是已报道突变体flo2的一个新等位突变体。

关键词: 水稻, 粉质胚乳, 淀粉性质, 基因定位, FLO2

Abstract:

Starch is the most abundant macromolecular substance in rice grain, and its composition and content have direct effect on quality indexes of rice. In this paper, agronomic and qualitative traits related to chalkiness and shrunken endosperm-2 (cse-2) were investigated and the candidate gene was mapped. The results showed that the agronomic traits including plant height, grain number per panicle, seed-setting rate, starch content and its components, physicochemical properties, starch grain morphology and structure, protein and fatty acid contents of the mutant had significantly altered. Mapping result showed that mutated phenotype is determined by a pair of nuclear recessive genes locating on chromosome 4. Sequence analysis indicated that a single nucleotide substitution of C-to-T occurred on the 6064th base of LOC_Os04g55230/FLO2, forming a TAA nonsense mutation. Therefore, cse-2 was a new allelic mutant of flo2.

Key words: Rice, Floury endosperm, Starch property, Gene mapping, FLO2

图1

野生型(ZH11)与突变体(cse-2)的表型比较 株高(a)、籽粒(b~e)。比例尺为10 cm(a)、1 cm(b~d)和1 mm(e)。

表1

野生型(ZH11)与突变体(cse-2)农艺性状比较

农艺性状Agronomic trait ZH11 cse-2
株高Plant height (cm) 104.05±0.56 94.55±1.18**
主茎穗长Main panicle length (cm) 23.80±0.46 21.22±0.51**
第1节间长
The first internode length (cm)
42.20±0.66
40.21±0.75
第2节间长
The second internode length (cm)
19.16±0.64
18.57±0.40
第3节间长
The third internode length (cm)
13.68±0.56
10.55±0.56**
第4节间长
The fourth internode length (cm)
7.35±0.14
5.24±0.17**
有效分蘖数Effective tiller number 20.75±2.47 24.85±2.56
一次枝梗数Primary branch number 13.88±0.40 13.83±1.01
二次枝梗数Secondary branch number 44.00±1.40 35.50±1.76**
穗粒数Grain number per panicle 221.85±6.84 191.90±6.11**
结实率Seed-setting rate (%) 89.84±0.13 80.58±0.19**
粒长Grain length (mm) 7.68±0.06 7.67±0.09
粒宽Grain width (mm) 3.51±0.01 3.49±0.02
粒厚Grain thickness (mm) 2.35±0.03 2.04±0.02**
千粒重1000-kernel weight (g) 25.63±0.40 19.16±0.17**

图2

野生型(ZH11)与突变体(cse-2)籽粒横截面扫描电镜图片

图3

野生型(ZH11)和突变体(cse-2)籽粒成分含量对比 “**”表示在P < 0.01水平上有极显著差异。

表2

野生型(ZH11)与突变体(cse-2)大米理化性质比较

材料
Material
起始温度
To (℃)
峰值温度
TP (℃)
结束温度
TC (℃)
焓变
?H (J/g)
碱消值
Alkali consumption value
胶稠度
Gel consistency (mm)
ZH11 66.90±0.55 72.20±0.37 76.10±0.27 6.50±0.22 8.10±0.37 56.40±0.18
cse-2 62.20±0.31** 68.10±0.48** 73.60±0.17** 5.80±0.11** 7.70±0.48** 69.60±0.15**

图4

CSE-2基因的精细定位 a~d:横线上方为定位所用的分子标记,横线下方为交换单株数,浅蓝色箭头表示候选基因;e:候选基因CSE-2结构图,浅蓝色框代表外显子,其中间空白部分代表内含子,红色箭头分别表示起始密码子、终止密码子、突变位点,黑线框内容表示突变位点;f:目的基因反向测序峰图,红线框内为突变位点;g:部分蛋白质序列比对,无义突变引起的氨基酸缺失。

图5

野生型(ZH11)与突变体(cse-2)中FLO2蛋白质序列比对 红色箭头表示cse-2突变体内FLO2突变形成终止密码子的位点。

[1] 徐春春, 纪龙, 陈中督, 等. 中国水稻生产、市场与进出口贸易的回顾与展望. 中国稻米, 2021, 27(4):17-21.
doi: 10.3969/j.issn.1006-8082.2021.04.005
[2] Hannah L C, James M. The complexities of starch biosynthesis in cereal endosperms. Current Opinion in Biotechnology, 2008, 19 (2):160-165.
doi: 10.1016/j.copbio.2008.02.013 pmid: 18400487
[3] Pfister B, Zeeman S C. Formation of starch in plant cells. Cellular and Molecular Life Sciences, 2016,73:2781-2807.
[4] Tang X J, Peng C, Zhang J, et al. ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm. Plant Science, 2016,249:70-83.
[5] Ryoo N, Yu C, Park C S, et al. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Reports, 2007,26:1083-1095.
[6] Satoh H, Nishi A, Yamashita K, et al. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiology, 2003, 133(3):1111-1121.
doi: 10.1104/pp.103.021527 pmid: 14526120
[7] Du L, Xu F, Fang J, et al. Endosperm sugar accumulation caused by mutation of PHS 8/ISA 1 leads to pre-harvest sprouting in rice. The Plant Journal, 2018, 95(3):545-556.
[8] Peng C, Wang Y H, Liu F, et al. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. The Plant Journal, 2014, 77(6):917-930.
[9] Zhang L, Li N, Zhang J, et al. The CBM48 domain-containing protein FLO 6 regulates starch synthesis by interacting with SSIVb and GBSS in rice. Plant Molecular Biology, 2022, 108(4/5):343-361.
[10] Long W H, Dong B N, Wang Y H, et al. FLOURY ENDOSPERM8, encoding the UDP-glucose pyrophosphorylase 1, affects the synthesis and structure of starch in rice endosperm. Journal of Plant Biology, 2017,60:513-522.
[11] She K C, Kusano H, Koizumi K, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. The Plant Cell, 2010, 22(10):3280-3294.
[12] Miyazak K, Ohkubo Y, Yasui H, et al. Overexpression of rice OsLEA5 relieves the deterioration in seed quality caused by high-temperature stress. Plant Biotechnology, 2021, 38(3):367-371.
[13] She K C, Kusano H, Yaeshima M, et al. Reduced rice grain production under high-temperature stress closely correlates with ATP shortage during seed development. Plant Biotechnology, 2010, 27(1):67-73.
[14] Hu T T, Tian Y L, Zhu J P, et al. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. Plant Cell Reports, 2018,37:1667-1679.
[15] Wu M M, Ren Y L, Cai M H, et al. Rice FLOURY ENDOSPERM10 encodes a pentatricopeptide repeat protein that is essential for the trans-splicing of mitochondrial nad1 intron 1 and endosperm development. New Phytologist, 2019,223:736-750.
[16] Wang L, Zhang W W, Liu S J, et al. Rice FLOURY SHRUNKEN ENDOSPERM 5 encodes a putative plant organelle RNA recognition protein that is required for cis-splicing of mitochondrial nad4 intron 1. Rice, 2021, 14(1):1-13.
[17] Yu M Z, Wu M M, Ren Y L, et al. Rice FLOURY ENDOSPERM 18 encodes a pentatricopeptide repeat protein required for 5′processing of mitochondrial nad 5 messenger RNA and endosperm development. Journal of Integrative Plant Biology, 2021, 63(5):834-847.
[18] Liu J X, Wu X B, Yao X F, et al. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(44):11327-11332.
[19] Zhang L, Ren Y L, Lu B Y, et al. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. Journal of Experimental Botany, 2016, 67(3):633-647.
doi: 10.1093/jxb/erv469 pmid: 26608643
[20] Kang H G, Park S, Matsuoka M, et al. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). The Plant Journal, 2005, 42(6):901-911.
[21] Cakir B, Shiraishi S, Tuncel A, et al. Analysis of the rice ADP-glucose transporter (OsBT1) indicates the presence of regulatory processes in the amyloplast stroma that control ADP-glucose flux into starch. Plant Physiology, 2016, 170(3):1271-1283.
doi: 10.1104/pp.15.01911 pmid: 26754668
[22] Lei J, Teng X, Wang Y F, et al. Plastidic pyruvate dehydrogenase complex E 1 component subunit Alpha1 is involved in galactolipid biosynthesis required for amyloplast development in rice. Plant Biotechnology Journal, 2022, 20(3):437-453.
[23] Ren Y L, Wang Y H, Pan T, et al. GPA5 encodes a Rab5a effector required for post-Golgi trafficking of rice storage proteins. The Plant Cell, 2020, 32(3):758-777.
[24] 中华人民共和国农业行业标准. 米质测定方法:NY 147—88. 北京: 中国标准出版社,1988.
[25] Bagchi T B, Sharma S, Chattopadhyay K, et al. Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran. Food Chemistry, 2016,191:21-27.
[26] Armstrong P R, Maghirang E B, Chen M H, et al. Predicting single kernel and bulk milled rice alkali spreading value and gelatinization temperature class using NIR spectroscopy. Cereal Chemistry, 2022, 99(6):1234-1245.
[27] Cheng W M, Xu Z P, Fan S, et al. Effects of variations in the chemical composition of individual rice grains on the eating quality of hybrid indica rice based on near-infrared spectroscopy. Foods, 2022, 11(17):2634.
[28] 魏芳, 郑乾坤, 罗世巧, 等. 橡胶树树皮和木质部淀粉和可溶性糖含量测定. 热带农业科学, 2014, 34(4):9-13.
[29] 赵玲珑. PTST2 基因调控水稻花粉和胚乳淀粉积累的功能解析. 扬州:扬州大学, 2020.
[30] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19):4321-4326.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[31] Qiao Y, Lee S I, Piao R, et al. Fine mapping and candidate gene analysis of the floury endosperm gene, FLO(a), in rice. Molecules and Cells, 2010,29:167-174.
[32] Wu Y P, Pu C H, Lin H Y, et al. Three novel alleles of FLOURY ENDOSPERM2 (FLO2) confer dull grains with low amylose content in rice. Plant Science, 2015,233:44-52.
[33] 邱家静. Flo2不同位点突变对水稻胚乳贮藏物质合成的影响.扬州: 扬州大学, 2021.
[34] Wei G, Yang H X, Xiong Z X, et al. TPR domain coding gene ST2 may be involved in regulating tillering and fertility in rice. Czech Journal of Genetics and Plant Breeding, 2021, 57(3):83-90.
[35] Mirus O, Bionda T, von Haeseler A, et al. Evolutionarily evolved discriminators in the 3-TPR domain of the Toc64 family involved in protein translocation at the outer membrane of chloroplasts and mitochondria. Journal of Molecular Modeling, 2009,15:971-982.
[36] Kihira M, Taniguchi K, Kaneko C, et al. Arabidopsis thaliana FLO2 is involved in efficiency of photoassimilate translocation,which is associated with leaf growth and aging,yield of seeds and seed quality. Plant and Cell Physiology, 2017, 58(3):440-450.
doi: 10.1093/pcp/pcw217 pmid: 28158741
[37] Zhang D P, Wu J, Zhang Y, et al. Phenotypic and candidate gene analysis of a new floury endosperm mutant (osagpl2-3) in rice. Plant Molecular Biology Reporter, 2012,30:1303-1312.
[38] Cao C, Shen M Y, Hu J W, et al. Comparative study on the structure-properties relationships of native and debranched rice starch. CyTA-Journal of Food, 2020, 18(1):84-93.
[39] Charoenthaikij P, Chaovanalikit A, Uan-On T, et al. Quality of different rice cultivars and factors influencing consumer willingness-to-purchase rice. International Journal of Food Science and Technology, 2021, 56(5):2452-2461.
[1] 田琴琴, 卓乐, 陈娜娜, 郑德超, 吴小京, 喻鹏, 陈平平, 易镇邪. 钙镁水滑石施用方式对双季稻糙米镉含量与土壤特性的影响[J]. 作物杂志, 2024, (5): 131–139
[2] 欧英卓, 赵晴, 顾怀应, 周宇阳, 刘长华, 孟丽君. 氯酸盐在水稻硝态氮研究中的应用现状[J]. 作物杂志, 2024, (4): 1–7
[3] 袁帅, 何明娟, 崔璨, 韩羽, 喻鹏, 易镇邪. 早稻基施不同用量钙镁水滑石对湘南双季稻产量和稻米品质影响[J]. 作物杂志, 2024, (4): 113–120
[4] 周舟, 沈炘垭, 王俊, 刘立军. 控释肥与普通尿素组合对水稻产量、氮肥利用率和米质的影响[J]. 作物杂志, 2024, (4): 180–187
[5] 李虎, 吴子帅, 刘广林, 罗群昌, 陈传华, 朱其南. 不同栽培条件对水稻籽粒镉含量及主要性状的影响研究[J]. 作物杂志, 2024, (4): 203–208
[6] 顾怀应, 胡诗钦, 赵晴, 刘长华, 孟丽君. 根际微生物增强水稻耐盐性研究进展[J]. 作物杂志, 2024, (4): 8–13
[7] 陈洛, 朱稳, 李雯慧, 赵均良, 周玲艳, 杨武. 水稻白叶枯病抗性基因的研究及应用进展[J]. 作物杂志, 2024, (3): 1–7
[8] 全成哲, 李淑芳, 李鹤南, 于维, 金京花. 吉林省73份审定水稻品种的表型性状遗传多样性研究[J]. 作物杂志, 2024, (3): 64–75
[9] 刘繁超, 方淑梅, 王庆燕, 王晗昕, 牛娟娟, 梁喜龙. 不同浓度外源氨基酸对水稻秧苗生长及相关生理指标的影响[J]. 作物杂志, 2024, (2): 71–79
[10] 季平, 刘金龙, 柳浩, 匡佳丽, 叶世河, 龙莎, 杨洪涛, 彭勃, 徐晨, 刘晓龙. 抽穗期高温胁迫对不同水稻品种产量构成和品质的影响[J]. 作物杂志, 2024, (1): 117–125
[11] 王晓蕾, 张云鹤, 牟金猛, 高大鹏, 耿艳秋, 曹译文, 卢芬, 关政闻, 邵玺文, 郭丽颖. 苏打盐碱胁迫对水稻光合特性及产量的影响[J]. 作物杂志, 2024, (1): 193–203
[12] 谢可冉, 高逖, 崔克辉. 高温下钾肥调控水稻产量的研究进展[J]. 作物杂志, 2024, (1): 8–15
[13] 谢昊, 薛张逸, 束晨晨, 张伟杨, 张耗, 刘立军, 王志琴, 杨建昌, 顾骏飞. 不同栽培措施下水稻基肥氮素利用率的15N示踪分析[J]. 作物杂志, 2024, (1): 90–96
[14] 高作利, 姜帅臣, 刘雨佳, 徐智慧, 刘海峰. 适合延边地区种植的彩色水稻品种筛选[J]. 作物杂志, 2023, (6): 62–68
[15] 刘艳, 曲航, 邢月华, 王晓辉, 宫亮. 新型氮肥对水稻生长、氮肥利用率和经济效益的影响[J]. 作物杂志, 2023, (5): 110–116
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!