作物杂志,2025, 第6期: 132–139 doi: 10.16035/j.issn.1001-7283.2025.06.016

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

花期高温胁迫下水稻种质资源的外观品质分析与评价

陈雷1(), 唐茂艳1(), 张战营2, 钟晓媛1, 高国庆1, 张晓丽1, 梁天锋1(), 潘英华1()   

  1. 1 广西壮族自治区农业科学院水稻研究所/广西水稻遗传育种重点实验室, 530007, 广西南宁
    2 中国农业大学农学院, 100193, 北京
  • 收稿日期:2024-09-18 修回日期:2024-10-25 出版日期:2025-12-15 发布日期:2025-12-12
  • 通讯作者: 潘英华,研究方向为水稻种质资源优异基因发掘与应用,E-mail:panyinghua2008@163.com;梁天锋为共同通信作者,研究方向为水稻轻简高产栽培技术,E-mail:tfliang@gxaas.net
  • 作者简介:陈雷,研究方向为水稻耐非生物逆境基因发掘与应用,E-mail:chenlei@gxaas.net;|唐茂艳为共同第一作者,研究方向为水稻耐非生物逆境生理,E-mail:tangmaoyan@gxaas.net
  • 基金资助:
    广西自然科学基金(2021GXNSFAA220093);国家自然科学基金(32160447);国家自然科学基金(32160501);国家现代农业产业技术体系广西(水稻)创新团队(nycytxgxcxtd-2021-01-04);国家重点研发计划(2023YFD1902804);广西重点研发计划项目(桂科AB21196055);海南省种业实验室与中国种子集团联合揭榜挂帅项目(B23YQ1517);海南省种业实验室与中国种子集团联合揭榜挂帅项目(B23CQ15HP);广西农业科学院基本科研业务专项(桂农科2024YP038);广西农业科学院基本科研业务专项(桂农科2024YP041)

Analysis and Evaluation of Grain Appearance Quality Traits in Rice Germplasm Resources under Heat Stress during Flowering Stage

Chen Lei1(), Tang Maoyan1(), Zhang Zhanying2, Zhong Xiaoyuan1, Gao Guoqing1, Zhang Xiaoli1, Liang Tianfeng1(), Pan Yinghua1()   

  1. 1 Rice Research Institute, Guangxi Academy of Agricultural Sciences / Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, Guangxi, China
    2 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2024-09-18 Revised:2024-10-25 Online:2025-12-15 Published:2025-12-12

摘要:

为探究不同水稻种质资源与稻米外观品质性状相关的花期耐热性,以来自国内外的347份水稻核心种质为试验材料,利用人工气候室进行花期高温胁迫,测定粒长、粒宽、粒长宽比、透明度、垩白粒率和垩白度6个稻米外观品质指标,通过描述统计法、相关性分析、隶属函数法、主成分分析、聚类分析和逐步回归分析等方法对不同水稻种质的耐热性进行综合评价。结果显示,高温处理下各性状的变异系数为12.19%~48.49%,自然对照变异系数为12.83%~83.29%;与对照相比,花期高温胁迫下的粒长、粒宽、粒长宽比和透明度均极显著降低,而垩白粒率和垩白度则极显著增加。相关性分析表明,高温处理和自然对照下,各指标之间均存在(极)显著相关性。主成分分析提取到3个主成分因子,累计贡献率达85.49%;根据各主成分特征向量和权重获得耐热性综合评价值(F值),基于F值进行聚类分析,将347份水稻种质分为强耐热型、耐热型、中间型、热敏感型和热高敏感型5个等级。利用逐步回归分析,建立F值与稻米外观品质性状耐热系数的最优线性回归方程(F值预测模型),据此筛选出粒长和垩白度作为与稻米外观品质相关的花期耐热性鉴定和评价指标,具有较高的准确性。

关键词: 水稻, 高温胁迫, 籽粒外观品质, 因子分析, 综合评价

Abstract:

To investigate the heat resistance related to grain appearance quality traits in different rice germplasm resources, 347 rice core germplasms from both domestic and international sources were used as the experimental materials and treated with high temperature during the flowering stage in a phytotron, and six rice grain appearance quality traits including grain length, grain width, grain length-to-width ratio, transparency, chalkiness rate, and chalkiness degree were determined after harvest. The heat tolerance of different rice germplasms was comprehensively evaluated using methods such as descriptive statistics, correlation analysis, membership function analysis, principal component analysis, cluster analysis, and stepwise regression analysis. The results showed that the coefficient of variation of various traits was 12.19%-48.49% under high temperature treatment and 12.83%-83.29% under control condition, respectively. Compared with the control condition, the grain length, grain width, grain length-to-width ratio, and grain transparency were highly significantly reduced under heat stress at anthesis, while the chalky grain rate and chalkiness degree were highly significantly increased. Correlation analysis revealed a (highly) significant correlation among various traits under high temperature treatment and control conditions. Principal component analysis extracted three principal component factors with a cumulative contribution rate of 85.49%. The comprehensive evaluation value (F-value) of heat tolerance was obtained according to the eigenvectors and weights of each principal component, and the F-value was subjected to cluster analysis to classify the 347 rice germplasm resources into five groups, including strong heat-tolerant type, heat-tolerant type, intermediate type, heat-sensitive type, and high heat-sensitive type. Through stepwise regression analysis, an optimal linear regression equation (F-value prediction model) was established between the F-value and the heat tolerance coefficient of rice appearance quality traits. According to this formula, grain length and chalkiness degree were selected as two suitable indicators for identifying and evaluating heat tolerance related to rice appearance quality under heat stress at anthesis, which had high accuracy.

Key words: Rice, Heat stress, Grain appearance quality, Factor analysis, Comprehensive evaluation

图1

高温胁迫和自然条件下稻米外观品质性状

表1

高温处理和自然条件下的稻米外观品质各指标分析

处理Treatment 指标Index 粒长GL (mm) 粒宽GW (mm) 粒长宽比GLWR 透明度TP 垩白粒率GCR (%) 垩白度CD (%)
HT 最大值 6.10 2.78 3.29 5.00 100.00 78.40
最小值 2.53 1.50 1.40 1.00 3.66 1.34
平均值 4.74 2.13 2.27 3.29 77.32 40.42
标准差 0.58 0.29 0.45 1.07 23.94 19.60
变异系数CV (%) 12.19 13.40 19.95 32.58 30.97 48.49
CK 最大值 6.80 2.94 3.57 5.00 100.00 71.90
最小值 3.47 1.39 1.42 1.00 2.52 0.59
平均值 5.22 2.21 2.42 2.75 56.30 19.66
标准差 0.67 0.30 0.53 1.12 28.46 16.37
变异系数CV (%) 12.83 13.37 21.90 40.63 50.55 83.29
DD-value 平均值 (%) -8.51 -3.02 -5.02 42.34 107.51 324.21
变异系数CV (%) -117.94 -297.55 -208.65 202.35 221.37 152.41
t检验 10.04 3.45 3.89 6.43 10.53 15.15
P *** *** *** *** *** ***

图2

稻米外观品质性状的相关性分析 (a) HT(右上)和CK(左下)处理下各性状指标的相关性分析;(b) 各性状指标耐热系数隶属函数值的相关性分析。“*”表示相关性显著(P < 0.05),“**”表示相关性极显著(P < 0.01),“***”表示相关性极显著(P < 0.001)。下同。

表2

稻米外观品质性状耐热系数的主成分分析

指标Index PC1 PC2 PC3
粒长RGL 0.231 0.903 0.343
粒宽RGW -0.138 0.083 0.972
粒长宽比RGLWR 0.339 0.840 -0.405
透明度RTP 0.690 -0.166 -0.148
垩白粒率RGCR 0.844 -0.262 0.198
垩白度RCD 0.891 -0.164 0.143
特征值Eigenvalue 2.170 1.652 1.308
贡献率Contribution rate (%) 36.163 27.531 21.795
累计贡献率Cumulative contribution rate (%) 36.163 63.694 85.489

表3

347份水稻种质资源耐热性分类

类群Group 份数
Number
F
F-value
种质
Germplasm
10 >1.093 TKM6、闽恢3301、吉粳88、绥粳8、WEED RICE 13、几占利/粳7623、BRC 25-146-2-1、恢752、2037(Rajahamsal)、二钢矮
122 0.932~1.067 CO 22、紫米、贵恢2190、阿尔季托/Ардито、斯里兰卡1号、KR200、连粳4号、秀水123、Bala、镇稻99、毫马克(K)、Seberang、武运粳19号、Gajale、晚三、茉莉占选、武粳15、早籼14、矮禾迟、IR77298-14-1-2、Y16B、徐稻5号、几内亚稻、Kalijira 245、Cisanggarung、红旗5号、垦稻12、龙粳24、Taichung Native 1、华564、丰杂、云光8号、IR68897B、R402、长野保持系、紫稻、万利籼、ITA 221、C70、陆引46/滇引陆稻2号、C349、旱恢10号、IR64、嘉育948、五大稻种、桂华占、Inga、SLG1、早熟香黑、红晚1号、齐粒丝苗、Bhavani、红晚1号、Tetep、X21、绥粳4、淮稻9号、兴国、秀水128、P59279、山酒谷、黄壳早廿日、八香/Tam thom、中413、小红谷、MR39、矮陆羽、圭630、柳沙1号、M202、油粘、黄丝桂占、绥粳7、武运粳21、龙粳26、JHONA 349、连粳6号、NPT-114、皖恢057、珍富8、花育560、AZUCENA、须谷糯、金早47、C418、霸王鞭1、02428-IL、PSBRC80、DINORADO、CISOKAN、BG304、Giza159、测253、IR50、IRBB7、JP-5、IR74、油占8号、广陆矮4号、IR68552-55-3-2、明恢77、红杂、中恢8006、IR06G113、PSBRC28、湘早籼31号、KCD1、SAGC-4、IR58821-23-1-3-1、解放籼、Arroz vermelho、绥粳9、盐恢559、MR167、MR106、广恢998、拉木加、ZR02、台中65号/台中HR539、OM997、金南特B、611(荃银引进二系恢)
185 0.762~0.930 白壳旱禾、粤晶丝苗2号、IAC 150/76、IR661-1、G珍汕97B、武育粳14号、TKM9、IRAT 266、阿尔巴尼亚、五子堆、洞庭晚籼、CT9993-5-10-1-M、红矮糯、Dumai、毫虑光粘、南粳44、三百粒、Tun Sart、香稻、IR65600-27-1-2-2、嘉991、缓阳粘、饿死牛、超恢-1、UPR 191-66、80B、Kogomg 1-1、IRAT 352、金南特43B、麻谷子、Y134、包选21号、矮麻抗、IRAT109、湘早籼45号、FL478、MR19、临果/Ringo、中超123、IRAT109/苏引稻2号、IR42、YR 83-23-11、C71、赤毛、博B、扬粳4038、暹罗斯赤、KASALATH、桂农占、Nionoka、龙稻5、B5-10、To974、六十早、垦鉴稻6、Tai-Zhong-Xian 10、百歌稻、矮脚南特、辐838、Qd_441、IR55419-04、黄皮糯、马尾粘、竹原、TN1、高紫、Matatag2、LX2007、矮移四/IV di tam lun、航1号、80A90YR72078-25、IR 50、特青、扬稻2号、丰华占、IR66897B、117、包协-7B、Sri Raja、Milyang23、Innmayebaw、Bg90-2、黎明B、本邦谷、岳恢9113、沪旱15、临沂塘稻、Pokhreli、乌壳占、Jhona 349、武运粳7号、IET1444、卫国、八宝米、IR6、Khao Mack Kheua、江农早1号B、J34、晋稻1号、Hei Mi Chan、OM1706、88B、B6136-3-TB-0-1-5、辽粳294、BR11、NSIC RC9(APO)、IR55411-53、Basmati、一支香、PMS 10B、CAOZHAO-2、IR26、Jijucas Claro、RP 1570-44-1、通粘1号、乐恢188、粤泰B、水原300粒、SARD、爷驼崽、Maravilha、湘恢299、YR196、浙恢7954、阳壳糯、徐稻3号、Basmati 443、Cisadane、竹珍B、P1790-5-1M-4-5M-1B-3M-B、南高谷、II32B、Type3、三江1、粤香占、BR 2029-2-2-2、龙粳21、K 24、沈农89366、合美占、矮仔占、多57、广陆矮15-1、恩恢58、中广香1号、To463、龙粳20、Padisenemok、武香粳14号、IR64-IL、MR2004、IRBB60、松01-173、WH26、泸恢17、密阳46、泸恢17、IRBB62、华粳籼74、71011、R287、寸谷糯、Bg300、野丝占、农垦58、绿旱1号、早熟农虎6号B、PD29、IR64-IL、黄华占、矮紫、C 894-21、SB90、铁秆乌、美国稻、辽星1号、Rohini、明恢86、Pelde、浙恢7954、Shwe Thwe Yin Hyv、NR 10045-20-3-2、测258、雷火占、Q5
27 0.565~0.742 京虎B、川香29B、高丽秋、Cs94、Govind、清糯キョハタモチ、桂99、蜀恢527、麻麻谷、R458、蜀恢498、黄丝占、R644、珍桂矮1号、Palung 2、黑督4、高阳淀稻大红芒、PR106、粳7623、B5、Budda、02428/IR60、云粳7、RNR 67580、蜀恢527、9311、NERICA-L-20
3 <0.525 中华1号、IRAT 10、42686

表4

不同类群的表型性状特征

类群
Group
各性状耐热系数的平均值
Average heat tolerance coefficient of each trait
RGL RGW RGLWR RTP RGCR RCD
1.1627 1.1414 1.0611 1.2800 1.1094 1.3405
0.9845 0.9813 1.0104 1.0904 1.2596 2.2054
0.8780 0.9583 0.9213 1.4939 2.0028 4.3101
0.7711 0.9406 0.8338 2.3852 5.2286 11.0674
0.8238 0.8967 0.9108 2.4444 14.5370 31.1199

图3

各性状指标耐热系数与F值的相关性分析(a)和Fm模型实测值与预测值对比(b)

[1] Sreenivasulu N, Pasion E, Kohli A. Idealizing inflorescence architecture to enhance rice yield potential for feeding nine billion people in 2050. Molecular Plant, 2021, 14(6):861-863.
doi: 10.1016/j.molp.2021.05.003 pmid: 33962061
[2] Pan Y H, Chen L, Zhu X Y, et al. Utilization of natural alleles for heat adaptability QTLs at the flowering stage in rice. BMC Plant Biology, 2023, 23(1):256.
doi: 10.1186/s12870-023-04260-5
[3] 宋有金, 吴超, 李子煜, 等. 水稻产量对生殖生长阶段不同时期高温的响应差异. 中国水稻科学, 2021, 35(2):177-186.
doi: 10.16819/j.1001-7216.2021.0203
[4] Cao R J, Zhao S L, Jiao G A, et al. OPAQUE3, encoding a transmembrane bZIP transcription factor, regulates endosperm storage protein and starch biosynthesis in rice. Plant Communication, 2022, 3(6):100463.
doi: 10.1016/j.xplc.2022.100463
[5] World Meteorological Organization. State of the Global Climate 2023. Switzerland:World Meteorological Organization, 2024.
[6] 中国气象局气候变化中心. 中国气候变化蓝皮书(2024). 北京: 科学出版社, 2024.
[7] 谭孟祥, 何燕, 王莹, 等. 1958-2018年广西早稻高温热害时空变化规律. 中国农学通报, 2020, 36(29):107-113.
doi: 10.11924/j.issn.1000-6850.casb20190900685
[8] 陈雷, 王强, 张晓丽, 等. 不同水稻基因型花期耐热性鉴定与评价. 南方农业学报, 2021, 52(10):2641-2649.
[9] 杨德卫, 张海峰, 余文权. 我国水稻种质资源创新研究与利用进展. 植物遗传资源学报, 2024, 25(4):495-508.
doi: 10.13430/j.cnki.jpgr.20231029001
[10] 穰中文, 周清明. 耐热水稻品种Nagina 22高温胁迫下的生理响应. 植物遗传资源学报, 2012, 13(6):1045-1049.
doi: 10.13430/j.cnki.jpgr.2012.06.020
[11] Wu C, Song Y J, Qi B B, et al. Effects of asymmetric heat on grain quality during the panicle initiation stage in contrasting rice genotypes. Journal of Plant Growth Regulation, 2023, 42:630-636.
doi: 10.1007/s00344-022-10598-1
[12] 陶龙兴, 谈惠娟, 王熹, 等. 开花和灌浆初期高温胁迫对国稻6号结实的生理影响. 作物学报, 2009, 35(1):110-117.
doi: 10.3724/SP.J.1006.2009.00110
[13] 曹云英, 段骅, 杨立年, 等. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因. 作物学报, 2008, 34(12):2134-2142.
doi: 10.3724/SP.J.1006.2008.02134
[14] Shi W, Ishimaru T, Gannaban R B, et al. Popular rice (Oryza sativa L.) cultivars show contrasting responses to heat stress at gametogenesis and anthesis. Crop Science, 2015, 55(2):589-596.
doi: 10.2135/cropsci2014.01.0054
[15] Tenorio F A, Ye C R, Redoña E, et al. Screening rice genetic resources for heat tolerance. Sabrao Journal of Breeding and Genetics, 2013, 45(3):341-351.
[16] Wei H, Liu J P, Wang Y, et al. A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48 °C high temperature at seedling stage. The Journal of Heredity, 2013, 104(2):287-294.
doi: 10.1093/jhered/ess103
[17] Maruyama A, Weerakoon W M W, Wakiyama Y, et al. Effects of increasing temperatures on spikelet fertility in different rice cultivars based on temperature gradient chamber experiments. Journal of Agronomy and Crop Science, 2013, 199(6):416-423.
doi: 10.1111/jac.2013.199.issue-6
[18] Scafaro A P, Haynes P A, Atwell B J. Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. Journal of Experimental Botany, 2010, 61 (1):191-202.
doi: 10.1093/jxb/erp294 pmid: 19819927
[19] Sarker M H, Hussain M H, Neik T X, et al. Screening of heat stress-tolerant weedy rice and SNP identification of heat- tolerance-related genes. Plant Biotechnology Reports, 2024, 18:659-672.
doi: 10.1007/s11816-024-00920-6
[20] Li X M, Chao D Y, Wu Y, et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 2015, 47(7):827-833.
doi: 10.1038/ng.3305
[21] Kan Y, Mu X R, Zhang H, et al. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nature Plants, 2022, 8(1):53-67.
doi: 10.1038/s41477-021-01039-0 pmid: 34992240
[22] Zhang H, Zhou J F, Kan Y, et al. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376:1293-1300.
doi: 10.1126/science.abo5721 pmid: 35709289
[23] Cao Z B, Tang H W, Cai Y H, et al. Natural variation of HTH5 from wild rice, Oryza rufipogon Griff., is involved in conferring high-temperature tolerance at the heading stage. Plant Biotechnology Journal, 2022, 20(8):1591-1605.
doi: 10.1111/pbi.v20.8
[24] Zhao D S, Zhang C Q, Li Q F, et al. Genetic control of grain appearance quality in rice. Biotechnology Advances, 2022, 60:108014.
doi: 10.1016/j.biotechadv.2022.108014
[25] Dou Z, Tang S, Li G H, et al. Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage. Crop Science, 2017, 57(4):2183-2192.
doi: 10.2135/cropsci2016.05.0350
[26] 易晓璇, 刘玮琦, 曾盖, 等. 灌浆期高温胁迫对早籼稻品质性状的影响. 中国水稻科学, 2024, 38(1):72-80.
doi: 10.16819/j.1001-7216.2024.221114
[27] Dou Z, Tang S, Chen W Z, et al. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta. Journal of Cereal Science, 2018, 81:118-126.
doi: 10.1016/j.jcs.2018.04.004
[28] 王文婷, 马佳颖, 李光彦, 等. 高温下不同施肥量对水稻产量品质形成的影响及其与能量代谢的关系分析. 中国水稻科学, 2023, 37(3):253-264.
doi: 10.16819/j.1001-7216.2023.220808
[29] 马廷臣, 夏加发, 王元垒, 等. 抽穗扬花期高温胁迫对水稻主要品质指标的影响. 生物技术进展, 2015, 5(5):351-358.
doi: 10.3969/j.issn.2095-2341.2015.05.05
[30] 季平, 刘金龙, 柳浩, 等. 抽穗期高温胁迫对不同水稻品种产量构成和品质的影响. 作物杂志, 2024(1):117-125.
[31] 徐泽俊, 齐玉军, 邢兴华, 等. 黄淮海大豆种质农艺与品质性状分析及综合评价. 植物遗传资源学报, 2022, 23(2):468-480.
doi: 10.13430/j.cnki.jpgr.20210915001
[32] 杨陶陶, 邹积祥, 伍龙梅, 等. 开放式增温对华南双季稻稻米品质的影响. 中国水稻科学, 2023, 37(1):66-77.
doi: 10.16819/j.1001-7216.2023.220402
[33] 张桂莲, 陈立云, 张顺堂, 等. 高温胁迫对水稻花器官和产量构成要素及稻米品质的影响. 湖南农业大学学报(自然科学版), 2007(2):132-136.
[34] 李小湘, 姚奕, 潘孝武, 等. 地方稻资源D43的开花期耐热特性研究. 植物遗传资源学报, 2017, 18(2):275-282.
[35] 肖本泽, 南波, 张方玉. 长江中下游流域水稻试验品种的耐热性鉴定. 中国稻米, 2022, 28(6):21-26.
doi: 10.3969/j.issn.1006-8082.2022.06.005
[36] 黎毛毛, 廖家槐, 张晓宁, 等. 江西省早稻品种抽穗扬花期耐热性鉴定评价研究. 植物遗传资源学报, 2014, 15(5):919-925.
[37] 陈劲, 唐文帮. 水稻耐极端高温育种研究进展. 杂交水稻, 2024, 39(3): 1-11.
[1] 孙强, 阮辛森, 周志豪, 孙会娟, 徐冉, 凌冬, 赵翠荣. 不同类型水稻品种表型性状遗传多样性分析[J]. 作物杂志, 2025, (6): 28–36
[2] 陈奕, 陈潇, 张茂星, 李静, 常静静, 李嘉炜, 林海晴, 陈兴平, 邓晓亮, 谢大森, 郭少龙, 沈仲灯, 张白鸽. 不同冬瓜品种对低盐胁迫的响应及其耐盐性综合评价[J]. 作物杂志, 2025, (6): 58–66
[3] 滕文, 叶凡, 周舟, 王屿乐, 刘立军. 小麦和油菜秸秆还田处理对盐胁迫下水稻产量和品质的影响[J]. 作物杂志, 2025, (5): 11–18
[4] 植藓闳, 纪子贤, 许镇旺, 谭恩, 梁日深, 马帅鹏, 唐辉武. 水稻CYP450家族基因Os78A5的表达分析[J]. 作物杂志, 2025, (5): 135–141
[5] 彭彬峰, 陆楚盛, 尹媛红, 朱菲菲, 叶群欢, 潘俊峰, 刘彦卓, 胡香玉, 胡锐, 李妹娟, 王昕钰, 梁开明, 傅友强. 高温胁迫下铵硝混配营养促进水稻生长的生理机制[J]. 作物杂志, 2025, (5): 165–170
[6] 曾嘉楠, 叶晓青, 蔡民爵, 周诚, 何澎, 陈壮壮, 陈雨峰, 曹良军, 陈建军, 王媛媛. 外源物质对高温胁迫下烤烟上部叶光合及抗氧化能力的影响[J]. 作物杂志, 2025, (5): 247–259
[7] 都晗萌, 陈雨琼, 刘若彤, 陈英龙, 戴其根, 张洪程, 廖萍. 盐胁迫下喷施矮壮素和施用石膏对水稻产量及倒伏特性的影响[J]. 作物杂志, 2025, (5): 29–34
[8] 王亮, 王睿, 朱金成, 桑玉伟, 史彪, 郭嘉帅, 焦灰敏, 何宗铃, 水涌. 50份花生品种(系)幼苗期耐盐性分析[J]. 作物杂志, 2025, (5): 35–41
[9] 殷君华, 邓丽, 郭敏杰, 苗建利, 胡俊平, 李绍伟, 任丽. 基于BLUP值和GGE双标图对小粒花生品种的综合评价[J]. 作物杂志, 2025, (4): 118–125
[10] 杨林生, 习敏, 涂德宝, 李忠, 周永进, 许有尊, 孙雪原, 吴文革. 长江三角洲地区主要类型水稻生产资源投入及碳、氮足迹评估[J]. 作物杂志, 2025, (4): 150–156
[11] 陶祖豪, 王慰亲, 郑华斌, 向军, 唐启源. 水肥及化控对晚稻有序机抛秧秧苗素质的影响[J]. 作物杂志, 2025, (4): 224–230
[12] 徐洪高, 徐萍, 罗文秀, 陆尤, 涂振华, 张萱, 陈艺春, 郑国伟, 杨颖翠, 陈佳. 热驯化对高温胁迫下灯盏花生理生化特性的影响[J]. 作物杂志, 2025, (3): 102–107
[13] 赫兵, 王晓航, 李超, 罗立强, 张强, 韩康顺, 陈殿元, 严光彬, 刘振蛟. 1987-2022年吉林省水稻审定品种数据分析[J]. 作物杂志, 2025, (3): 16–22
[14] 曹正男, 赵振东, 胡博, 于涵, 宁晓海, 赵泽强, 曹立勇. 氮肥与促腐菌肥配施对寒地水稻秸秆还田腐解效果及产量的影响[J]. 作物杂志, 2025, (3): 172–177
[15] 李虎, 黄秋要, 吴子帅, 刘广林, 陈传华, 罗群昌, 朱其南. 种植密度和施氮量对优质常规稻桂育12产量和米质的影响[J]. 作物杂志, 2025, (3): 195–201
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!