作物杂志,2023, 第2期: 67–76 doi: 10.16035/j.issn.1001-7283.2023.02.010

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

耐盐性不同水稻品种根系对盐胁迫的响应差异及其机理研究

顾逸彪1,2(), 颜佳倩1,2, 薛张逸1,2, 束晨晨1,2, 张伟杨1,2, 张耗1,2, 刘立军1,2, 王志琴1,2, 周振玲3, 徐大勇3, 杨建昌1,2, 顾骏飞1,2()   

  1. 1扬州大学江苏省作物遗传生理重点实验室/江苏省作物栽培生理重点实验室,225009,江苏扬州
    2江苏省粮食作物现代产业技术协同创新中心/扬州大学农学院,225009,江苏扬州
    3连云港市农业科学院/江苏省现代作物生产协同创新中心,222006,江苏连云港
  • 收稿日期:2022-05-10 修回日期:2022-06-12 出版日期:2023-04-15 发布日期:2023-04-11
  • 通讯作者: 顾骏飞,研究方向为水稻栽培生理,E-mail:gujf@yzu.edu.cn
  • 作者简介:顾逸彪,研究方向为水稻耐盐栽培生理,E-mail:guyibiao728@163.com
  • 基金资助:
    国家自然科学基金(31872853)

Different Responses of Roots of Rice Varieties to Salt Stress and the Underlying Mechanisms

Gu Yibiao1,2(), Yan Jiaqian1,2, Xue Zhangyi1,2, Shu Chenchen1,2, Zhang Weiyang1,2, Zhang Hao1,2, Liu Lijun1,2, Wang Zhiqin1,2, Zhou Zhenling3, Xu Dayong3, Yang Jianchang1,2, Gu Junfei1,2()   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou 225009, Jiangsu, China
    2Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, Yangzhou 225009, Jiangsu, China
    3Lianyungang Academy of Agricultural Sciences/Jiangsu Collaborative Innovation Center of Modern Crop Production, Lianyungang 222006, Jiangsu, China
  • Received:2022-05-10 Revised:2022-06-12 Online:2023-04-15 Published:2023-04-11

摘要:

为阐明耐盐性不同的水稻品种根系和产量对盐胁迫的响应及其生理特性,以4个耐盐水稻品种和2个盐敏感水稻品种为材料,设置4个不同的盐浓度处理(0.0、1.0、2.0和2.5g/kg)。结果表明,与盐敏感水稻品种相比,耐盐水稻品种能够耐受更高浓度的盐胁迫(2.5g/kg),且减产幅度较小。耐盐水稻品种具有较高的产量,得益于其较高的总颖花量和结实率,且总颖花量对产量的影响最大。与盐敏感水稻品种相比,在分蘖中期、穗分化期和抽穗后15d,耐盐水稻品种在盐胁迫下具有更大的根系总吸收表面积和活跃吸收表面积,更高的根系氧化力,更有优势的根长、根直径和根表面积,较低的过氧化氢含量,较高的脱落酸含量以及更强的固定Na的能力。上述结果表明,分蘖中期、穗分化期和抽穗后15d根系生理性状和形态性状差异会影响水稻产量构成因素中的总颖花量和结实率,进而影响产量,且根干重与根长对总颖花量和结实率的影响最大。这也证实了较发达的根系是水稻具有较强耐盐性的生理基础。耐盐水稻良好的根系生理和形态性状是获得高产的基础。该研究结果对水稻耐盐生理机制研究与水稻耐盐育种有借鉴意义。

关键词: 水稻, 盐胁迫, 产量, 根系生理性状, 根系形态性状

Abstract:

The objective of this study is to elucidate the responses of root traits and yields of salt-tolerant and salt-susceptible rice varieties to different levels of salt stress, four salt-tolerant rice varieties and two salt- susceptible rice varieties with four different salt concentration levels, including 0.0, 1.0, 2.0 and 2.5g/kg. Results showed that the yields of salt-tolerant varieties were less reduced than that of salt-susceptible varieties, and salt-tolerant varieties were able to tolerate higher salt concentration of 2.5g/kg. Salt-tolerant varieties produced higher grain yield mainly due to the greater total spikelets and higher filled grain percentage, and the number of total spikelets had the greatest effect on grain yield. Salt-tolerant rice varieties had higher total root absorption area and active absorption area, higher root oxidation activity, higher root length, root diameter and root surface area, lower content of H2O2, higher content of abscisic acid and stronger ability to retain Na+ under salt stress from mid-tillering to heading. The above results showed that the differences of root physiological and morphological traits in mid-tillering stage, panicle stage and 15 days after heading could affect the number of total spikelets and seed-setting rate of rice, and then affect rice yield. Root dry weight and root length had the greatest effects on total spikelets number and seed-setting rate. Results indicated that the developed root system was the physiological basis of salt tolerance of rice. The better root physiological and morphological indexes of salt-tolerant rice varieties were the basis for achieving high yield. The results of this study could be helpful for the physiological researches and the breeding of salt-tolerant rice.

Key words: Rice, Salt stress, Yield, Root physiological trait, Root morphological trait

表1

盐胁迫对不同水稻品种产量及其构成因素的影响(2020)

品种
Variety
处理
Treatment
每盆穗数
Number of
panicles per pot
穗粒数
Spikelets per
panicle
总颖花数
Total number of
spikelets (×103)
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
产量
(g/盆)
Yield (g/pot)
减产率
Yield reduction
rate (%)
连鉴5号
Lianjian 5
0.00% 21.3a 170a 3.63a 70.2a 24.5a 62.4a /
0.10% 20.7a 142b 2.94b 69.5a 24.5a 49.8b 20.0a
0.20% 20.3a 119c 2.42c 69.5a 24.3a 40.9c 34.5b
0.25% 15.3b 109d 1.78d 67.7a 23.2b 27.9d 55.3c
连鉴6号
Lianjian 6
0.00% 19.3a 176a 3.40a 64.7a 26.1a 57.2a /
0.10% 18.7a 141b 2.62b 62.9a 27.2a 44.8b 21.7a
0.20% 15.7b 133bc 2.09c 62.8a 27.2b 35.7c 37.7b
0.25% 14.7b 128c 1.87c 62.2a 25.5b 29.6d 48.1c
连鉴7号
Lianjian 7
0.00% 18.3a 164a 3.01a 71.0a 27.4a 58.6a /
0.10% 16.7b 157a 2.61b 69.4b 26.8b 48.7b 16.7a
0.20% 15.0c 130b 1.95c 69.1b 26.6b 36.3c 37.9b
0.25% 13.7c 117c 1.60d 67.5c 26.6b 28.7d 50.8c
连鉴9号
Lianjian 9
0.00% 18.7a 147a 2.74a 86.5a 24.2a 57.3a /
0.10% 18.3a 145a 2.66a 81.6b 24.1a 52.4b 8.5a
0.20% 16.3b 127b 2.07b 75.4c 22.8b 35.6c 37.9b
0.25% 16.3b 100c 1.64c 70.1d 22.6b 25.8d 54.9c
连粳7号
Lianjing 7
0.00% 21.0a 175a 3.65a 73.8a 27.3a 73.6a /
0.10% 17.7b 164a 2.90b 60.3b 27.2b 47.6b 35.3a
0.20% 11.7c 105b 1.23c 57.5b 27.1b 19.1c 74.1b
0.25% / / / / / / /
武运粳30号
Wuyunjing 30
0.00% 20.7a 191a 3.93a 79.1a 27.2a 84.5a /
0.10% 15.7b 143b 2.23b 54.9b 27.0a 33.0b 60.9a
0.20% 12.7c 122c 1.55c 48.5c 26.7b 20.0c 76.3b
0.25% / / / / / / /

表2

盐胁迫对不同水稻品种产量及其构成因素的影响(2021)

品种 处理 每盆穗数 穗粒数 总颖花数 结实率 千粒重 产量 减产率
Variety Treatment No. of panicles Spikelets per Total number of Seed-setting 1000-grain (g/盆) Yield reduction
per pot panicle spikelets (×103) rate (%) weight (g) Yield (g/pot) rate (%)
连鉴5号 0.00% 21.6a 173a 3.75a 73.9a 23.4a 64.7a /
Lianjian 5 0.10% 19.2b 158b 3.06b 68.7ab 23.3a 48.8b 24.6a
0.20% 19.4c 142c 2.76b 67.4b 23.0b 42.8b 33.8b
0.25% 16.4c 132d 2.14c 66.1b 22.3c 32.0c 50.5c
连鉴6号 0.00% 22.5a 141a 3.19a 82.5a 26.7a 70.3a /
Lianjian 6 0.10% 18.3b 134ab 2.45b 78.6ab 26.7a 51.4b 26.9a
0.20% 14.5c 129b 1.88c 75.6b 26.4b 37.3c 46.9b
0.25% 13.3c 124b 1.65c 73.5c 25.9c 31.4c 55.3c
连鉴7号 0.00% 20.2a 149a 3.00a 81.0a 27.4a 66.6a /
Lianjian 7
0.10% 16.8b 141a 2.57b 80.0a 27.5a 52.4b 21.4a
0.20% 15.6b 122b 1.94c 73.9b 27.4a 38.8c 41.7b
0.25% 12.8c 124b 1.10d 70.4c 27.4b 30.7d 53.9c
连鉴9号 0.00% 21.6a 147a 3.17a 85.5a 24.3a 66.0a /
Lianjian 9
0.10% 19.6b 138ab 2.71b 84.8a 24.4a 56.0b 15.1a
0.20% 17.8c 131bc 2.34c 80.1b 24.3a 45.6c 30.9b
0.25% 14.8d 123c 1.94d 77.5b 23.9b 33.8d 48.8c
连粳7号 0.00% 24.6a 156a 3.84a 85.1a 25.7a 83.9a
Lianjing 7
0.10% 21.2b 130b 2.75b 70.2b 25.7a 49.7b 40.7a
0.20% 16.6c 113c 1.91c 55.1c 24.3b 25.3c 69.8b
0.25% / / / / / / /
武运粳30号 0.00% 20.0a 187a 3.25a 81.8a 27.8a 85.3a /
Wuyunjing 30 0.10% 13.5b 141b 1.93b 67.1b 27.8a 35.6b 58.2a
0.20% 11.8b 117c 1.38c 52.5c 27.0c 19.7c 76.9b
0.25% / / / / / / /

表3

盐胁迫下不同水稻品种各时期的根系形态性状(2021)

品种
Variety
处理
Treatment
根干重(g/盆)
Root dry weight (g/pot)
根长(m/盆)
Root length (m/pot)
根表面积(cm2/盆)
Root surface area (cm2/pot)
平均根直径
Mean root diameter (mm)
MT PI HD-15 MT PI HD-15 MT PI HD-15 MT PI HD-15
连鉴5号
Lianjian 5
0.00% 4.159a 17.448a 14.216a 250.8a 839.7a 718.9a 5586.9a 11 851.1a 10 032.6a 0.694a 0.785a 0.791a
0.10% 3.214b 14.188b 12.059b 204.7ab 711.0b 620.8b 4366.0b 9284.3b 8864.2b 0.602ab 0.713ab 0.728ab
0.20% 2.65bc 12.020c 10.146bc 168.8bc 657.3b 539.8b 3756.8b 8574.6b 7794.6b 0.579b 0.639b 0.649b
0.25% 2.401c 11.058d 9.170c 129.5c 528.2c 435.1c 2158.2c 6918.0c 5693.3c 0.509b 0.592b 0.608b
连鉴6号
Lianjian 6
0.00% 4.171a 17.244a 14.581a 236.2a 848.1a 722.4a 5707.7a 11 575.4a 9867.3a 0.689a 0.785a 0.810a
0.10% 3.225b 14.011b 12.237b 192.6b 734.4b 635.7ab 4360.6b 9706.5b 8359.0b 0.606b 0.720ab 0.725ab
0.20% 2.106c 12.04bc 10.539bc 157.9bc 649.3b 560.7b 3707.4c 8462.3c 7297.6c 0.552bc 0.623bc 0.632b
0.25% 1.626c 10.050c 9.388c 122.2c 534.2c 422.3c 2166.3d 6866.9d 5581.7d 0.495c 0.609c 0.616b
连鉴7号
Lianjian 7
0.00% 4.108a 18.219a 14.160a 254.1a 822.8a 750.1a 5246.1a 11 408.7a 9640.4a 0.681a 0.764a 0.789a
0.10% 3.372b 13.981b 11.933b 200.8b 694.4b 645.2ab 4089.0a 9636.5b 8322.1ab 0.575ab 0.692ab 0.707ab
0.20% 2.556c 11.013bc 10.788c 153.3c 621.1bc 545.4bc 2632.8b 8286.0bc 6956.6b 0.503b 0.642bc 0.657bc
0.25% 1.959d 9.760c 8.715d 118.4c 529.8c 440.6c 2070.4b 6657.2c 5437.1c 0.474b 0.616c 0.610c
连鉴9号
Lianjian 9
0.00% 4.392a 17.673a 14.485a 272.3a 840.1a 759.9a 5869.2a 12 105.6a 10 136.7a 0.723a 0.797a 0.827a
0.10% 3.694b 14.935b 12.361ab 233.3ab 726.4b 632.9b 4454.4b 9594.0b 8728.4b 0.659ab 0.716ab 0.731ab
0.20% 2.833c 13.327c 11.031b 193.4bc 638.6bc 549.2bc 3669.6bc 8471.1bc 7923.5b 0.578b 0.663b 0.667b
0.25% 2.297d 11.256d 9.729b 160.3c 562.0c 454.9c 2614.1c 7337.0c 5879.0c 0.566b 0.638b 0.635b
连粳7号
Lianjing 7
0.00% 4.825a 19.894a 15.735a 317.0a 906.1a 805.0a 4620.5a 13 629.3a 11 861.9a 0.739a 0.878a 0.888a
0.10% 2.935b 13.128b 11.239b 223.6b 640.9b 563.3b 3476.4b 8558.8b 7334.6b 0.574b 0.678b 0.694b
0.20% 2.100c 10.093c 9.199c 159.6c 483.3c 426.6b 2390.2c 7157.5bc 6316.8b 0.512c 0.554bc 0.529c
0.25% 1.360d 7.548d / 112.3d 383.8d / 1667.9c 5961.8c / 0.438d 0.459c /
武运粳30
Wuyunjing 30
0.00% 4.308a 19.541a 15.797a 236.3a 913.2a 807.1a 4321.1a 14 240.0a 10 880.0a 0.733a 0.864a 0.868a
0.10% 2.435b 12.135b 10.886b 187.2b 606.1b 537.9b 3139.6b 7874.6b 6973.7b 0.512b 0.633b 0.631b
0.20% 1.520c 9.816c 8.335b 150.7c 463.0c 423.2b 1804.0c 6095.4c 5475.9b 0.427c 0.561bc 0.537c
0.25% 1.104c 6.895c / 97.9d 370.9d / 1384.3c 5775.4c / 0.394c 0.466c /

图1

盐胁迫对水稻主要生育时期根系氧化力的影响 J5:连鉴5号,J6:连鉴6号,J7:连鉴7号,J9:连鉴9号,L7:连粳7号,W30:武运粳30。不同小写字母表示不同品种在同一处理下差异显著(P < 0.05)。下同

图2

盐胁迫对水稻主要生育时期根系总吸收表面积和活跃吸收表面积的影响

图3

盐胁迫对水稻主要生育时期根系H2O2含量的影响

图4

盐胁迫对水稻主要生育时期根系ABA含量的影响

图5

盐胁迫对水稻主要生育时期根系Na+、K+含量和Na+/K+的影响

图6

抽穗后15d水稻根系性状与产量及其构成因素的相关性分析

[1] Negrão S, Courtois B, Ahmadi N, et al. Recent updates on salinity stress in rice:from physiological to molecular responses. Critical Reviews in Plant Sciences, 2011, 30(4):329-377.
doi: 10.1080/07352689.2011.587725
[2] Zhang J L, Flowers T J, Wang S M, et al. Mechanisms of sodium uptake by roots of higher plants. Plant and Soil, 2010, 326:45-60.
doi: 10.1007/s11104-009-0076-0
[3] 范王涛. 土壤盐碱化危害及改良方法研究. 农业与技术, 2020, 40(23):114-116.
[4] 郑英杰. 盐胁迫对水稻的影响及水稻耐盐育种研究. 北方水稻, 2013, 43(5):71-74,80.
[5] 王娜, 陈亚萍, 田蕾, 等. 粳稻种质资源苗期根系形态特征与耐盐性相关分析. 广东农业科学, 2015, 42(10):1-10.
[6] Sewelam N, Kazan K, Schenk PM. Global plant stress signaling: Reactive oxygen species at the cross-road. Frontiers in Plant Science, 2016, 7:187.
doi: 10.3389/fpls.2016.00187 pmid: 26941757
[7] 李格, 孟小庆, 蔡敬, 等. 活性氧在植物非生物胁迫响应中功能的研究进展. 植物生理学报, 2018, 54(6):951-959.
[8] 邓勇, 刘聪, 田野, 等. 过表达OsCatC基因水稻的获得及其耐盐性机理分析. 西北植物学报, 2021, 41(1):1-8.
[9] 杨丽萍, 韩晗, 石淼, 等. 非生物胁迫处理后拟南芥过氧化氢含量变化的分析. 吉林师范大学学报(自然科学版), 2022, 43(1):107-110.
[10] Gurmani A R, Bano A, Khan S U, et al. Alleviation of salt stress by seed treatment with abscisic acid (ABA),6- benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa L.). Australian Journal of Crop Science, 2011, 5:1278-1285.
[11] Fuchs I, Stölzle S, Ivashikina N, et al. Rice K+ uptake channel OsAKT1is sensitive to salt stress. Planta, 2005, 221:212-221.
pmid: 15599592
[12] 黄洁, 白志刚, 钟楚, 等. 水稻耐盐生理及分子调节机制. 核农学报, 2020, 34(6):1359-1367.
doi: 10.11869/j.issn.100-8551.2020.06.1359
[13] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006.
[14] 章骏德, 刘国屏, 施永宁. 植物生理试验法. 南昌: 江西人民出版社,1982.
[15] 褚光, 刘洁, 张耗, 等. 超级稻根系形态生理特征及其与产量形成的关系. 作物学报, 2014, 40(5):850-858.
[16] 许更文. 灌溉方式与施氮量对水稻产量影响的互作效应及其生理基础. 扬州:扬州大学, 2017.
[17] 许阳东, 朱宽宇, 章星传, 等. 绿色超级稻品种的农艺与生理性状分析. 作物学报, 2019, 45(1):70-80.
doi: 10.3724/SP.J.1006.2019.82036
[18] 边甜甜, 颜坤, 韩广轩, 等. 盐胁迫下菊芋根系脱落酸对钠离子转运和光系统Ⅱ的影响. 应用生态学报, 2020, 31(2):508-514.
[19] 谷娇娇. 盐胁迫对水稻氮代谢及产量的影响. 哈尔滨:东北农业大学, 2019.
[20] 付景, 陈露, 黄钻华, 等. 超级稻叶片光合特性和根系生理性状与产量的关系. 作物学报, 2012, 38(7):1264-1276.
[21] 吕海艳. 盐碱胁迫对水稻根系形态特征及产量的影响. 北京: 中国科学院研究生院(东北地理与农业生态研究所), 2014.
[22] 李香玲, 冯跃华. 水稻根系生长特性及其与地上部分关系的研究进展. 中国农学通报, 2015, 31(6):1-6.
doi: 10.11924/j.issn.1000-6850.2014-2474
[23] 谷娇娇, 胡博文, 贾琰, 等. 盐胁迫对水稻根系相关性状及产量的影响. 作物杂志, 2019(4):176-182.
[24] 沙汉景. 外源脯氨酸对盐胁迫下水稻耐盐性的影响. 哈尔滨:东北农业大学, 2013.
[25] Yang C M, Yang L Z, Yang Y X, et al. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management, 2004, 70:67-81.
doi: 10.1016/j.agwat.2004.05.003
[26] Osaki M, Shinano T, Matsumoto M, et al. A root-shoot interaction hypothesis for high productivity of field crops. Plant Nutrition for Sustainable Food Production and Environment, 1997, 43:1079- 1084.
[27] 荆培培. 水稻品种耐盐性及其生理特征的研究. 扬州:扬州大学, 2018.
[28] 颜佳倩, 顾逸彪, 薛张逸, 等. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制. 作物学报, 2022, 48(6):1463-1475.
doi: 10.3724/SP.J.1006.2022.12027
[29] Zhang J H, Jia W S, Yang J C, et al. Role of ABA integrating pant responses to drought and salt stresses. Field Crops Research, 2006, 97(1):111-119.
doi: 10.1016/j.fcr.2005.08.018
[30] Atia A, Debez A, Barhoumi Z, et al. ABA,GA3 and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions. Comptes Rendus Biologies, 2009, 332(8):704-710.
doi: 10.1016/j.crvi.2009.03.009
[31] 姚曼红, 刘琳, 曾幼玲. 五大类传统植物激素对植物响应盐胁迫的调控. 生物技术通报, 2011(11):1-5,25.
[32] 潘瑞炽. 植物生理学(第五版). 北京: 高等教育出版社, 2004.
[33] Gong Z Z, Xiong L M, Shi H Z, et al. Plant abiotic stress response and nutrient use efficiency. Science China (Life Sciences), 2020, 63(5):635-674.
[34] 麻莹. 盐碱混合胁迫下抗碱盐生植物碱地肤的渗透调节及其离子平衡特点. 长春:东北师范大学, 2007.
[35] Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Science, 2005, 45:437-448.
doi: 10.2135/cropsci2005.0437
[1] 王荣升, 牟凤臣, 李坤, 张微, 刘会, 丁国华, 杨光, 王南博, 张国民, 刘玉明, 陶永庆. 寒地粳稻碾磨品质和食味品质相关性状的综合分析[J]. 作物杂志, 2023, (2): 115–120
[2] 杨世奇, 陈丽明, 周燕芝, 谭雪明, 曾勇军, 石庆华, 潘晓华, 曾研华. 杂草防除对双季直播优质晚籼稻产量和稻米品质的影响[J]. 作物杂志, 2023, (2): 121–125
[3] 刘宇, 曹家林, 肖正午, 张鸣宇, 陈佳娜, 曹放波, 黄敏. 施氮量对超级杂交稻Y两优900产量与氮肥利用率的影响[J]. 作物杂志, 2023, (2): 126–130
[4] 马瑞琦, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才, 常旭虹. 追氮量对不同筋型小麦品种产量及农艺性状的调控效应[J]. 作物杂志, 2023, (2): 131–137
[5] 崔淑娜, 王晔, 卢雨晴, 潘金豹, 张秋芝. 玉米穗三叶与产量的相关和通径分析[J]. 作物杂志, 2023, (2): 201–206
[6] 徐东, 何建清, 张格杰, 刘海鑫, 马金玉, 王思远. 化肥配施园林废弃物堆肥对青稞产质量及土壤肥力的影响[J]. 作物杂志, 2023, (2): 214–221
[7] 马继钰, 王爽, 李云, 郭振清, 王健, 林小虎, 韩玉翠. 种植密度对谷子农艺性状及产量的影响[J]. 作物杂志, 2023, (2): 222–228
[8] 贾路明, 莫爱素, 莫意雪, 吴海燕. 水稻潜根线虫生防菌筛选、鉴定及其杀线虫活性研究[J]. 作物杂志, 2023, (2): 238–244
[9] 肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生. 基于GGE双标图的高粱品种农艺性状和稳产性分析[J]. 作物杂志, 2023, (2): 36–45
[10] 唐中杰, 谢德意, 许守明, 聂利红, 吕淑平, 王明坤. 2005-2020年转Bt基因棉花抗虫性变化及其与产量性状的相关性分析[J]. 作物杂志, 2023, (2): 77–82
[11] 袁帅, 苏雨婷, 陈平平, 易镇邪. 氮肥运筹对湘南双季杂交稻生长发育与稻米品质的影响[J]. 作物杂志, 2023, (2): 91–99
[12] 夏玉莹, 王志君, 李红宇, 胡传军, 吕艳东, 赵海成, 郑桂萍. 育苗方式对寒地水稻秧苗素质、产量及品质的影响[J]. 作物杂志, 2023, (1): 103–108
[13] 高伟, 郝青婷, 张泽燕, 王茜, 闫虎斌, 朱慧珺, 赵雪英, 张耀文. 施氮磷肥对小豆产量、根系形态及光合特性的影响[J]. 作物杂志, 2023, (1): 109–114
[14] 王玉娇, 常旭虹, 王德梅, 王艳杰, 杨玉双, 石书兵, 赵广才. 播种方式对不同品种小麦产量和品质的影响[J]. 作物杂志, 2023, (1): 122–128
[15] 赵晶云, 吕新云, 刘小荣, 任海红, 任小俊, 马俊奎. 幼龄核桃林下带状复合间作对大豆生长及产量的影响[J]. 作物杂志, 2023, (1): 136–142
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!