作物杂志,2024, 第6期: 153–161 doi: 10.16035/j.issn.1001-7283.2024.06.021

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

有机质施用量对马铃薯产量及氮、磷、钾养分吸收利用的影响

阳新月1,2(), 向颖1,2, 陈子恒1,2, 林茜1,2, 邓振鹏1,2, 周克友3, 李明聪3, 王季春1,2()   

  1. 1西南大学农学与生物科技学院,400715,重庆
    2薯类生物学与遗传育种重庆市重点实验室,400715,重庆
    3重庆市巫溪县农业技术推广中心,405800,重庆
  • 收稿日期:2024-01-17 修回日期:2024-03-08 出版日期:2024-12-15 发布日期:2024-12-05
  • 通讯作者: 王季春,研究方向为薯类作物栽培生理,E-mail:wjchun@swu.edu.cn
  • 作者简介:阳新月,研究方向为马铃薯栽培生理,E-mail:hi_yangxinyue@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFD020080802)

Effects of Organic Matter Application Rate on Yield and Nitrogen, Phosphorus and Potassium Nutrient Absorption and Utilization in Potato

Yang Xinyue1,2(), Xiang Ying1,2, Chen Ziheng1,2, Lin Qian1,2, Deng Zhenpeng1,2, Zhou Keyou3, Li Mingcong3, Wang Jichun1,2()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
    3Wuxi Agricultural Technology Promotion Center, Chongqing 405800, China
  • Received:2024-01-17 Revised:2024-03-08 Online:2024-12-15 Published:2024-12-05

摘要:

为探究有机质提升下马铃薯对土壤氮、磷、钾养分的吸收利用特点,采用中晚熟品种青薯9号,在2个基础肥力差异较大的试验点,设置有机质0(T1)、975(T2)、1950(T3)、2925(T4)和3900 kg/hm2(T5)5个有机质用量处理,并设不施肥处理(T0),研究有机质施用总量增加对土壤养分含量与微生物数量,及对中晚熟品种青薯9号产量、干物质积累量和养分吸收利用情况的影响。结果表明,有机质施入总量增加能有效提高土壤养分含量和土壤微生物数量;随着有机质施入量的增加,马铃薯产量、养分积累量以及养分利用率、肥料贡献率、肥料偏生产力与土壤细菌/真菌比率均呈现先增后减的趋势,且基础肥力较高试验点高于基础肥力较低试验点。在基础肥力较高的歇马试验点和基础肥力较低的尖山试验点分别施入有机质975和1950 kg/hm2时其产量最佳,较T1处理分别增产11.84%和8.22%。综上,施入有机质对肥料利用率、偏生产力与肥料贡献率的作用更突出;土壤肥力较高时,马铃薯更易于达到高产目标;施入过多或过少有机质均不利于马铃薯的营养吸收与产量形成。

关键词: 马铃薯, 有机质, 氮、磷、钾养分, 养分吸收利用, 产量

Abstract:

To investigate the features of potato nutrient absorption and utilization (nitrogen, phosphorus, and potassium) after adding organic matter, two experimental sites with significant variations in basal fertility were selected. Five organic matter dosage levels were established: 0 (T1), 975 (T2), 1950 (T3), 2925 (T4) and 3900 kg/ha (T5), with no fertilizer application (T0) serving as the control. The medium-late ripening variety Qingshu 9 was used to examine soil nutrient content, microbial population, potato yield, dry matter accumulation and nutrient absorption and utilization. The results showed that the increase of organic matter could effectively improve the soil nutrient content and soil microbial population. With the increase of organic matter, potato yield, nutrient accumulation, nutrient utilization rate, fertilizer contribution rate, partial factor productivity and soil bacteria to fungi ratio showed increase first and then decrease, and all of them were higher in the high base fertility experimental site than those in the low base fertility. The highest potato yields were obtained when 975 and 1950 kg/ha of organic matter were applied in the experimental site of Xiema (with high base fertility) and Jianshan (with low base fertility), which increased yield by 11.84% and 8.22% compared with T1 treatment, respectively. Overall, there was a greater noticeable impact of organic matter on fertilizer utilization rate, partial factor productivity and fertilizer contribution rate. A higher yield of potato is more likely to obtain in relatively high soil fertility. Adding too much or too little organic matter is not conductive to the nutrient absorption and yield formation of potatoes.

Key words: Potato, Organic matter, Nitrogen, phosphorus and potassium nutrient, Nutrient absorption and utilization, Yield

表1

试验地土壤基础肥力状况

地点
Site
土壤类型
Soil type
碱解氮
Alkaline-hydrolytic N (mg/kg)
有效磷
Available P (mg/kg)
速效钾
Available K (mg/kg)
有机质
Organic matter (g/kg)
pH
歇马Xiema 沙壤土 96.13 95.49 130.33 34.51 5.48
尖山Jianshan 沙壤土 22.63 7.29 67.92 9.28 6.52

表2

试验处理及施肥量

处理
Treatment
施用量Application amount 总有效养分量折算Total effective nutrient conversion
有机肥Organic fertilizer N P2O5 K2O 有机质Organic matter N P2O5 K2O
T0 0 0 0 0 0 0 0 0
T1 0 225 113 300 0 225 113 300
T2 1875 214 84 298 975 225 113 300
T3 3750 203 56 296 1950 225 113 300
T4 5625 191 28 294 2925 225 113 300
T5 7500 180 0 293 3900 225 113 300

表3

不同有机质施入量对土壤养分的影响

地点
Site
处理
Treatment
碱解氮
Alkaline-hydrolytic N (mg/kg)
速效磷
Available P (mg/kg)
有效钾
Available K (mg/kg)
有机质
Organic matter (g/kg)
歇马Xiema T0 18.20±0.57d 10.77±0.37b 130.47±4.74c 8.36±0.46e
T1 20.37±1.15c 12.41±0.68a 148.59±6.17b 8.18±0.05e
T2 21.23±1.19c 12.75±0.53a 151.00±3.83b 9.54±0.12d
T3 23.10±1.71b 13.29±0.96a 157.91±6.45ab 11.60±0.04c
T4 25.43±1.19a 13.58±0.19a 164.11±10.80ab 13.19±0.02b
T5 25.67±0.66a 13.76±1.18a 170.18±3.72a 14.41±0.15a
尖山Jianshan T0 73.53±2.10c 56.10±4.98c 65.88±1.29c 33.28±2.45f
T1 83.30±2.62b 65.94±7.60bc 124.04±6.20b 34.26±0.02e
T2 84.70±3.96b 60.60±5.06bc 139.16±8.10ab 35.58±0.43d
T3 85.63±3.81ab 72.90±6.94b 156.28±13.50a 36.66±0.48c
T4 90.07±3.72ab 88.93±7.88a 154.21±13.02a 37.29±0.02b
T5 93.80±5.24a 95.78±5.68a 153.59±1.33a 38.46±0.40a

表4

不同有机质施入量对土壤微生物群落的影响

处理
Treatment
歇马Xiema 尖山Jianshan
放线菌
Actinomycetes
(×105/g)
细菌
Bacteria
(×106/g)
真菌
Fungi
(×103/g)
放线菌
Actinomycetes
(×105/g)
细菌
Bacteria
(×106/g)
真菌
Fungi
(×103/g)
T0 10.33±1.53c 6.33±6.33d 15.33±1.53c 15.33±1.53c 13.33±1.53c 28.67±1.53cd
T1 11.33±1.53c 7.67±1.53cd 18.33±0.57ab 16.67±1.53bc 13.67±0.58bc 30.67±1.53ab
T2 12.00±1.00bc 9.33±1.53bc 16.67±1.53bc 18.67±1.53ab 15.67±0.58a 29.00±2.00cd
T3 13.33±0.58b 12.00±12.00a 19.33±1.53a 19.67±2.08a 16. 67±1.53a 27.67±1.52d
T4 15.67±1.53a 8.67±8.67bc 17.00±1.00bc 20.00±1.00a 15.67±1.53a 29.67±0.57bc
T5 13.33±1.53b 10.00±10.00b 19.33±1.53a 21.33±2.08a 15.33±2.52ab 31.33±1.53a

图1

不同有机质施入量对土壤细菌/真菌的影响 不同小写字母表示处理间差异达P < 0.05显著水平,下同。

表5

Effects of different organic matter application rate on dry matter accumulation per plant g/株g/plant

地点
Site
处理
Treatment
根干重
Root dry weight
茎干重
Stem dry weight
叶干重
Leaf dry weight
块茎干重
Tuber dry weight
总干物质积累
Total dry matter accumulation
歇马Xiema T0 0.20±0.04d 7.54±3.10c 9.33±2.95d 44.10±3.20d 61.17±6.36d
T1 0.43±0.02c 36.98±2.20b 19.61±2.34c 71.32±5.51bc 128.34±1.12c
T2 0.54±0.05a 44.15±7.04a 27.96±0.70a 91.93±8.18a 164.58±12.74a
T3 0.52±0.05ab 38.82±2.36ab 26.68±0.75ab 84.68±8.72ab 150.71±10.33ab
T4 0.45±0.04abc 42.26±6.16ab 25.35±1.23ab 74.87±2.88bc 142.93±6.10bc
T5 0.44±0.02bc 37.38±2.43b 23.32±2.75b 67.65±7.85c 128.79±5.44c
尖山Jianshan T0 0.34±0.11c 6.69±2.49d 6.02±0.45c 72.60±7.90c 85.64±7.56c
T1 0.61±0.07b 28.30±1.55b 10.48±1.22b 83.35±2.68b 122.75±1.77b
T2 0.81±0.05a 32.65±1.95a 13.80±0.80a 91.29±4.97ab 138.54±3.34a
T3 0.85±0.03a 32.38±1.89a 13.30±1.54a 97.50±1.35a 144.02±2.71a
T4 0.82±0.09a 30.22±0.97ab 8.78±0.56b 98.10±8.48a 137.91±9.97a
T5 0.53±0.11b 20.92±0.40c 9.12±1.75b 84.87±5.73b 115.44±6.35b

表6

不同有机质施入量对马铃薯产量的影响

处理
Treatment
歇马Xiema 尖山Jianshan
产量Yield 淀粉产量Starch yield 产量Yield 淀粉产量Starch yield
T0 21 187±1132e 5196±340e 19 403±959e 4215±255d
T1 38 955±896c 9055±255cd 35 202±1618b 6629±373b
T2 43 567±1229a 10 349±357a 36 739±797ab 7301±194a
T3 41 655±441b 9727±126b 38 096±1263a 7502±304a
T4 40 891±896b 9415±252bc 30 675±310c 6017±74c
T5 37 139±633d 8657±180d 27 959±1306d 5673±324c

表7

不同有机质施入量对马铃薯养分积累量的影响

处理
Treatment
歇马Xiema 尖山Jianshan
N P K N P K
T0 27.40±4.61e 6.65±0.83d 55.00±9.68d 45.29±3.50e 9.61±0.91e 66.87±7.03c
T1 111.96±5.76d 15.85±0.25c 169.60±5.47c 127.25±1.19c 14.71±0.18d 150.79±2.24b
T2 163.19±6.57a 22.97±0.63a 231.21±6.95a 142.12±4.21b 20.72±0.55b 200.55±7.05a
T3 145.67±8.90b 20.07±1.31b 216.07±12.60b 156.67±2.43a 25.54±0.65a 198.58±5.08a
T4 129.42±9.09c 20.04±1.46b 210.50±9.71b 128.51±10.20c 18.94±1.56c 189.17±13.43a
T5 107.56±5.70d 17.18±0.54c 177.75±3.87c 111.37±7.80d 14.54±0.93d 149.81±7.93b

表8

不同有机质施入量对马铃薯养分利用率的影响

处理
Treatment
歇马Xiema 尖山Jianshan
氮肥利用率
N utilizing rate
磷肥利用率
P utilizing rate
钾肥利用率
K utilizing rate
氮肥利用率
N utilizing rate
磷肥利用率
P utilizing rate
钾肥利用率
K utilizing rate
T1 37.58±1.27c 18.77±1.24b 46.02±1.69b 36.42±1.03c 10.42±1.25d 33.70±2.56b
T2 55.91±3.38a 30.59±2.11a 66.03±3.49a 43.03±2.58b 22.67±2.32b 53.69±4.59a
T3 52.57±1.94a 27.38±1.26a 62.74±4.77a 49.50±1.74a 32.52±1.42a 52.90±3.34a
T4 45.35±1.66b 27.32±1.38a 65.13±3.52a 36.98±2.82c 19.06±1.38c 49.12±2.73a
T5 35.63±1.61c 21.49±1.33b 49.30±2.49b 29.37±2.97d 10.07±1.34d 33.31±2.65b

表9

不同有机质施入量对肥料偏生产力的影响

处理
Treatment
歇马Xiema 尖山Jianshan
氮肥偏生产力
N partial
productivity
磷肥偏生产力
P partial
productivity
钾肥偏生产力
K partial
productivity
氮肥偏生产力
N partial
productivity
磷肥偏生产力
P partial
productivity
钾肥偏生产力
K partial
productivity
T1 173.13±3.98c 346.26±7.97c 129.85±2.99c 156.45±7.19b 312.90±14.39b 117.34±5.40b
T2 193.63±5.47a 387.26±10.93a 145.22±4.10a 163.28±3.54ab 326.56±7.09ab 122.46±2.66ab
T3 185.13±1.96b 370.27±3.93b 138.85±1.47b 169.32±5.61a 338.63±11.23a 126.99±4.21a
T4 181.74±3.98b 363.47±7.97b 136.30±2.99b 136.33±1.38c 272.67±2.76c 102.25±1.04c
T5 165.06±2.81c 330.12±5.63c 123.80±2.11c 124.26±5.81d 248.53±11.61d 93.20±4.35d

图2

不同有机质施入量对肥料贡献率的影响

[1] 谢从华, 柳俊. 中国马铃薯从济荒作物到主粮之变迁. 华中农业大学学报, 2021, 40(4):8-15.
[2] 何天久, 李其义, 吴巧玉, 等. 氮磷钾对马铃薯产量和品质影响的研究进展. 黑龙江农业科学, 2014(9):40-144.
[3] 董文, 范祺祺, 胡新喜, 等. 马铃薯养分需求及养分管理技术研究进展. 中国蔬菜, 2017(8):21-25.
[4] 李百云, 李慧, 许泽华. 化肥减施结合有机肥对灵武长枣果园土壤肥力及果实品质的影响. 果树资源学报, 2022, 3(4):7-22.
[5] Reeves D. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil and Tillage Research, 1997, 43(1/2):131-167.
[6] Lal R. Soil health and carbon management. Food and Energy Security, 2016, 5(4):212-222.
[7] Brady N C, Weil R R, Weil R R. The nature and properties of soils. Prentice Hall Upper Saddle River. Sedimentology, 2000, 47(6):1230.
[8] Foley J A, Ramankutty N, Brauman K A, et al. Solutions for a cultivated planet. Nature, 2011, 478(7369):337-342.
[9] Philip R G, Gross K L, Hamilton S K, et al. Farming for ecosystem services: An ecological approach to production agriculture. BioScience, 2014, 64(5):404-415.
pmid: 26955069
[10] 魏猛, 张爱君, 诸葛玉平, 等. 长期不同施肥对黄潮土区冬小麦产量及土壤养分的影响. 植物营养与肥料学报, 2017, 23 (2):304-312.
[11] Mohammad A, Ali S. Influence of integrated use of chemical, biological and organic fertilizers on nitrate, lead and cadmium concentration and physiological characteristics of different cultivars of potato. Research on Crops, 2014, 15(1):198-205.
[12] 李玉梅, 李建兵, 胡颖慧, 等. 有机物料对马铃薯生长与土壤物理特性的影响. 中国土壤与肥料, 2021(4):104-108.
[13] 陈会鲜, 曹升, 严华兵, 等. 增施生物有机肥对食用木薯产量及品质的影响. 热带作物学报, 2019, 40(3):417-424.
doi: 10.3969/j.issn.1000-2561.2019.03.001
[14] 梁玲玲, 周霞, 李志强, 等. 不同减肥技术对马铃薯养分高效利用的影响. 中国马铃薯, 2020, 34(3):150-157.
[15] 何万春, 黄凯, 令鹏, 等. 不同有机肥氮替代化肥氮比例对马铃薯根系吸收能力和形态的影响. 作物杂志, 2020(3):132- 136.
[16] 秦永林, 石晓华, 贾立国, 等. 有机肥替代化肥对马铃薯―小麦轮作体系产量及钾肥利用率的影响. 北方农业学报, 2019, 47(4):47-51.
doi: 10.3969/j.issn.2096-1197.2019.04.08
[17] 程谦勋, 武艳, 关文义, 等. 有机肥替代化肥对皖北小麦产量及养分利用率的影响. 安徽农学通报, 2021, 27(22):118-120,184.
[18] 陈猛猛, 张士荣, 吴立鹏, 等. 有机―无机配施对盐渍土壤水稻生长及养分利用的影响. 水土保持学报, 2019, 33(6):311-317,325.
[19] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[20] Perez-Piqueres A, Edel-Hermann V, Alabouvette C, et al. Response of soil microbial communities to compost amendments. Soil Biology and Biochemistry, 2006, 38(3):460-470.
[21] 李君, 张云贵, 刘青丽, 等. 冕宁烤烟推荐施肥关键参数试验研究. 中国土壤与肥料, 2022(2):80-85.
[22] 徐霞, 赵亚南, 黄玉芳, 等. 不同地力水平下的小麦施肥效应. 中国农业科学, 2018, 51(21):4076-4086.
doi: 10.3864/j.issn.0578-1752.2018.21.007
[23] Johnston A E. Soil organic matter,effects on soils and crops. Soil Use and Management, 1986, 2(3):97-105.
[24] Johnston A E, Poulton P R, Coleman K. Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. Advances in Agronomy, 2009, 101:1-57.
[25] 何进勤, 雷金银, 桂林国, 等. 不同氮水平及生物有机肥对旱地土壤养分和马铃薯产量及品质的影响. 江苏农业科学, 2021, 49(10):191-196.
[26] 景宇鹏, 赵沛义, 康文钦, 等. 不同施肥处理对阴山北麓旱作区土壤肥力及马铃薯产量的影响. 北方农业学报, 2021, 49 (2):36-43.
doi: 10.12190/j.issn.2096-1197.2021.02.06
[27] 张萌, 芶久兰, 魏全全, 等. 不同生物有机肥对贵州高海拔春马铃薯生长及土壤肥力的影响. 作物杂志, 2019(3):132-136.
[28] Powlson D S, Whitmore A P, Goulding K W. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Science, 2011, 62(1):42-55.
[29] Oldfield E E, Bradford M A, Wood S A. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil, 2019, 5(1):15-32.
doi: 10.5194/soil-5-15-2019
[30] 陶磊, 褚贵新, 刘涛, 等. 有机肥替代部分化肥对长期连作棉田产量、土壤微生物数量及酶活性的影响. 生态学报, 2014, 34(21):6137-6146.
[31] 刘星, 张书乐, 刘国锋, 等. 土壤熏蒸-微生物有机肥联用对连作马铃薯生长和土壤生化性质的影响. 草业学报, 2015, 24(3):122-133.
doi: 10.11686/cyxb20150313
[32] 柳玲玲, 范成五, 芶久兰, 等. 土壤肥力、辣椒产量及品质对有机肥施用量的响应. 西南农业学报, 2015, 28(5):2162-2165.
[33] 张彬彬, 史春余, 柳洪鹃, 等. 钾肥基施利于甘薯块根产量的形成. 植物营养与肥料学报, 2017, 23(1):208-216.
[34] 李鸣凤, 王清林, 鲁明星, 等. 有机水溶肥料与无机肥料配施对马铃薯产量、养分吸收和品质的影响. 中国马铃薯, 2014, 28(6):340-347.
[35] 高怡安, 程万莉, 张文明, 等. 有机肥替代部分化肥对甘肃省中部沿黄灌区马铃薯产量、土壤矿质氮水平及氮肥效率的影响. 甘肃农业大学学报, 2016, 51(2):54-60,68.
[36] 张水清, 黄绍敏, 娄翼来, 等. 华北潮土区不同肥力水平土壤基础地力研究. 中国农学通报, 2016, 32(20):97-100.
doi: 10.11924/j.issn.1000-6850.casb16010090
[37] 刘拴成. 有机肥与无机肥配施对马铃薯生长发育及产质量的影响. 河南农业科学, 2020, 49(3):32-39.
[38] 张悦, 马一凡. 不同生物有机复合肥施肥量对半干旱区马铃薯水分利用、产量及经济收益的影响. 中国马铃薯, 2017, 31(4):221-226.
[39] 徐茜, 肖波, 宗洪霞, 等. 生物炭有机肥对马铃薯主要性状及生产效益的影响. 中国马铃薯, 2021, 35(6):562-567.
[40] 王国兴, 徐福利, 王渭玲, 等. 氮磷钾及有机肥对马铃薯生长发育和干物质积累的影响. 干旱地区农业研究, 2013, 31(3):106-111.
[41] 赵健宇, 王凤新, 孟潮彪, 等. 生物有机肥对马铃薯产量与土壤氮循环微生物的影响. 农业机械学报, 2022, 53(4):343-351.
[42] Kosina P, Reynolds M, Dixon J, et al. Stakeholder perception of wheat production constraints, capacity building needs, and research partnerships in developing countries. Euphytica, 2007, 157(3):475-483.
[43] Oldfield E E, Wood S A, Bradford M A. Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth. Ecological Applications, 2020, 30(4):e02073.
[44] Sojka R, Upchurch D. Reservations regarding the soil quality concept. Soil Science Society of America Journal, 1999, 63(5):1039-1054.
[45] 夏圣益. 土壤基础地力、施肥水平与农作物产量的关系. 上海农业科技, 1998(1):6-8.
[46] 张君, 赵沛义, 潘志华, 等. 基于产量及环境友好的玉米氮肥投入阈值确定. 农业工程学报, 2016, 32(12):136-143.
[1] 法晓彤, 孟庆好, 王琛, 顾汉柱, 景文疆, 张耗. 水稻根系形态生理对干湿交替灌溉方式的响应研究进展[J]. 作物杂志, 2024, (6): 1–8
[2] 程生煜, 杨彩红, 崔文强, 姜晓敏. 不同耕种模式对玉米叶片生理及结构的影响[J]. 作物杂志, 2024, (6): 103–112
[3] 汪本福, 余振渊, 宋平原, 张作林, 张枝盛, 李阳, 苏章锋, 郑中春, 程建平. 土壤改良剂对低湖冷浸田土壤特性及水稻生长的影响[J]. 作物杂志, 2024, (6): 126–131
[4] 庞敏昡, 王瀚, 李志涛, 史宁帆, 蒲转芳, 张锋, 姚攀锋, 毕真真, 白江平, 孙超. 不同水分处理下施用立收谷对马铃薯品质的影响[J]. 作物杂志, 2024, (6): 132–139
[5] 曾茜倩, 张振远, 马秀娥, 方映涵, 翟金磊, 金涛, 刘冬, 刘章勇. 硅藻土对水稻产量和氮肥利用率的影响[J]. 作物杂志, 2024, (6): 147–152
[6] 张金鑫, 葛均筑, 李从锋, 周宝元. 黄淮海平原夏玉米生长季气候资源分配与利用特征[J]. 作物杂志, 2024, (6): 162–170
[7] 赵希梅, 李琪, 严如玉, 向风云, 李雅琼, 李绪勋, 邹家龙, 李继福. 无人机飞播时期及播种方式对冬油菜产量、品质和经济效益的影响[J]. 作物杂志, 2024, (6): 179–185
[8] 金彦君, 祝洪沙, 李成东, 王金禹, 张忠福, 万婷丽, 周爱爱, 撒刚, 程李香, 刘娟, 余斌. 外源激素对雾培马铃薯叶片气孔密度及块茎产量的调控[J]. 作物杂志, 2024, (6): 205–211
[9] 李宗泽, 陆占军, 史云云, 杜伟, 蒋旭东, 杨明进, 杨俊丽, 黄秀琴, 杨飞. 宁夏马铃薯脱毒种薯主要病毒病调查[J]. 作物杂志, 2024, (6): 232–236
[10] 于沐, 杨海棠, 胡延岭, 刘软枝, 石彦召, 李盼, 韩艳红, 朱桢桢, 李世忠, 郭振超. 花生产量组成的基因型与环境互作及稳定性分析[J]. 作物杂志, 2024, (6): 55–60
[11] 杨铁鑫, 董立强, 马亮, 冯莹莹, 李志强. 辽宁中部平原稻区香型粳稻品种产量及品质评价[J]. 作物杂志, 2024, (6): 71–77
[12] 郝青婷, 高伟, 张泽燕, 闫虎斌, 朱慧珺, 张耀文. 铁肥施用对绿豆产量和籽粒含铁量的影响[J]. 作物杂志, 2024, (5): 105–109
[13] 孙光旭, 刘莹, 王欣怡, 孔德庸, 韦娜, 邢力文, 郭伟. 群体密度和黄腐酸对芸豆产量及籽粒营养品质的影响[J]. 作物杂志, 2024, (5): 110–118
[14] 王珊珊, 杨宇蕾, 刘飞虎, 杨阳, 汤开磊, 李涛, 牛龙江, 杜光辉. 多效唑喷施浓度和时期对工业大麻花叶产量和大麻二酚含量的影响[J]. 作物杂志, 2024, (5): 119–124
[15] 黄渝岚, 刘文君, 李艳英, 周佳, 周灵芝, 劳承英, 李素平, 申章佑, 韦本辉. 木薯田间作不同密度南瓜对作物产量、经济效益及土地生产力的影响[J]. 作物杂志, 2024, (5): 125–130
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!