作物杂志,2026, 第1期: 18 doi: 10.16035/j.issn.1001-7283.2026.01.001
• 专题综述 • 下一篇
Sun Rumeng(
), Zhang Nan, Yin Jia, Ru Yan, Jing Wenjiang, Zhang Hao(
)
摘要:
水分是影响水稻生长发育的关键因素,探索水分高效利用机制对水稻生产至关重要。在植物生长发育过程中,根系会向周围环境分泌各类化合物,即根系分泌物。这些物质通过引发根际效应调控植物的生长与发育,是植物生长过程中不可或缺的部分。本文系统综述了根系分泌物的类型、生成途径及其在干旱胁迫下的生理响应机制,通过深入分析水稻根系分泌物在水分调控中的作用机理,指出当前研究中存在的问题,并对未来的研究方向提出建议。
| [1] | Luo W Q, Chen M T, Kang Y H, et al. Analysis of crop water requirements and irrigation demands for rice: implications for increasing effective rainfall. Agricultural Water Management, 2022,260:107285. |
| [2] | Zeigler R S, Barclay A. The relevance of rice. Rice, 2008,1:3-10. |
| [3] | 吕银斐, 任艳芳, 刘冬, 等. 不同水分管理方式对水稻生长、产量及品质的影响. 天津农业科学, 2016, 22(1):106-110. |
| [4] |
Badri D V, Vivanco J M. Regulation and function of root exudates. Plant,Cell & Environment, 2009, 32(6):666-681.
doi: 10.1111/pce.2009.32.issue-6 |
| [5] | 常二华, 杨建昌. 根系分泌物及其在植物生长中的作用. 耕作与栽培, 2006(5):13-16. |
| [6] | Rovira A D. Plant root exudates. The Botanical Review, 1969,35:35-57. |
| [7] |
Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57(1):233-266.
doi: 10.1146/arplant.2006.57.issue-1 |
| [8] |
Henry A, Doucette W, Norton J, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. Journal of Environmental Quality, 2007, 36(3):904-912.
doi: 10.2134/jeq2006.0425sc pmid: 17485723 |
| [9] | 王雨菡, 陈莲, 张培珍, 等. 根系分泌物与根际微生物对土壤重金属污染的响应与修复作用(综述). 江苏农业科学, 2024, 52(5):19-27. |
| [10] | Araujo A S F, Pereira A P A, de Medeiros E V, et al. Root-driven microbiome memory enhances plant disease resistance. Trends in Plant Science, 2025,12:3. |
| [11] |
Gu Y, Wang X F, Yang T J, et al. Chemical structure predicts the effect of plant‐derived low‐molecular weight compounds on soil microbiome structure and pathogen suppression. Functional Ecology, 2020, 34(10):2158-2169.
doi: 10.1111/fec.v34.10 |
| [12] |
Jones D L. Organic acids in the rhizosphere-a critical review. Plant and Soil, 1998, 205(1):25-44.
doi: 10.1023/A:1004356007312 |
| [13] |
Jones D L, Dennis P G, Owen A G, et al. Organic acid behavior in soils-misconceptions and knowledge gaps. Plant and Soil, 2003, 248(1/2):31-41.
doi: 10.1023/A:1022304332313 |
| [14] | 王雪, 段玉玺, 陈立杰, 等. 大豆根系分泌物中氨基酸组分与抗大豆胞囊线虫的相关性研究. 沈阳农业大学学报, 2008, 39 (6):677-681. |
| [15] | 孙冰清. 根系分泌物及其组分对土壤中多环芳烃的活化作用. 南京:南京农业大学, 2011. |
| [16] |
Erb M, Kliebenstein D J. Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiology, 2020, 184(1):39-52.
doi: 10.1104/pp.20.00433 pmid: 32636341 |
| [17] |
Sandhu N, Raman K A, Torres R O, et al. Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. Plant Physiology, 2016, 171 (4):2562-2576.
doi: 10.1104/pp.16.00705 pmid: 27342311 |
| [18] | Ma W M, Tang S H, Dengzeng Z M, et al. Root exudates contribute to belowground ecosystem hotspots: a review. Frontiers in Microbiology, 2022,13:937940. |
| [19] | 李勇, 黄小芳, 丁万隆.根系分泌物及其对植物根际土壤微生态环境的影响. 华北农学报, 2008, 23(增):182-186. |
| [20] |
Phillips D A, Fox T C, King M D, et al. Microbial products trigger amino acid exudation from plant roots. Plant Physiology, 2004, 136(1):2887-2894.
doi: 10.1104/pp.104.044222 pmid: 15347793 |
| [21] |
Murata Y, Iyama J, Honma T. Studies on the photosynthesis of rice plants: XIII. On the interrelationships between photosynthetic activity of the leaf and physiological activity of the root. Japanese Journal of Crop Science, 1965, 34(2):148-153.
doi: 10.1626/jcs.34.148 |
| [22] | 李敏, 赵熙州, 王好运, 等. 干旱胁迫及外生菌根菌对马尾松幼苗根系形态及分泌物的影响. 林业科学, 2022, 58(7):63-72. |
| [23] | Meier I C, Finzi A C, Phillips R P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biology and Biochemistry, 2017,106:119-128. |
| [24] |
Scheffknecht S, Mammerler R, Steinkellner S, et al. Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza, 2006, 16(5):365-370.
doi: 10.1007/s00572-006-0048-7 pmid: 16528569 |
| [25] | 李佳佳, 樊妙春, 上官周平. 植物根系分泌物主要生态功能研究进展. 植物学报, 2020, 55(6):788-796. |
| [26] | 杜思垚, 方娅婷, 鲁剑巍. 根系分泌物对作物养分吸收利用的影响研究进展. 华中农业大学学报, 2023, 42(2):147-157. |
| [27] | Tang Y, Xia P G. WRKY transcription factors: key regulators in plant drought tolerance. Plant Science, 2025,359:112647. |
| [28] | Chen Y E, Xia P G. NAC transcription factors as biological macromolecules responded to abiotic stress: a comprehensive review. International Journal of Biological Macromolecules, 2025,308:142400. |
| [29] | Zhang R R, Luo S L, Li L, et al. The role of PYL genes as core components of abscisic acid signaling in plant abiotic stress response. Horticultural Plant Journal. (2025-06-10)[2025-06-12]. https://doi.org/10.1016/j.hpj.2025.06.006. |
| [30] | Sahil R, Pal V, Kharat A S, et al. A multi-omics meta-analysis of rhizosphere microbiome reveals growth-promoting marker bacteria at different stages of legume development. Plant,Cell & Environment. (2025-02-02)[2025-06-12]. https://doi.org/10.1111/pce.15429 |
| [31] |
Sircar S, Parekh N. Meta-analysis of drought-tolerant genotypes in Oryza sativa: a network-based approach. PLoS ONE, 2019, 14(5):e0216068.
doi: 10.1371/journal.pone.0216068 |
| [32] |
Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology, 2003, 30(3):239-264.
doi: 10.1071/FP02076 |
| [33] | 徐国伟, 陆大克, 王贺正, 等. 施氮和干湿灌溉对水稻抽穗期根系分泌有机酸的影响. 中国生态农业学报, 2018, 26(4):516-525. |
| [34] |
Lynch J. Root architecture and plant productivity. Plant Physiology, 1995, 109(1):7.
doi: 10.1104/pp.109.1.7 pmid: 12228579 |
| [35] | Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 2002, 245(1):201-213. |
| [36] |
Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 2006, 57(1):781-803.
doi: 10.1146/arplant.2006.57.issue-1 |
| [37] |
Zhou C, Wu S J, Li C C, et al. Response mechanisms of woody plants to high-temperature stress. Plants, 2023, 12(20):3643.
doi: 10.3390/plants12203643 |
| [38] | 毛梦雪, 朱峰. 根系分泌物介导植物抗逆性研究进展与展望. 中国生态农业学报, 2021, 29(10):1649-1657. |
| [39] | 黄春雪, 王希, 赵春雷. 糖料作物对干旱胁迫的形态、生理及基因响应研究进展. 中国糖料, 2024, 46(1):48-56. |
| [40] | 辛建攀, 马思思, 田如男. 梭鱼草叶片抗氧化酶、抗坏血酸-谷胱甘肽循环与乙二醛酶系统对铅胁迫的响应. 西北植物学报, 2023, 43(10):1723-1731. |
| [41] | 张金菊, 田青, 郭有燕, 等. 黑果枸杞根系对干旱胁迫响应的生理机制. 甘肃农业大学学报, 2023, 58(4):183-191. |
| [42] |
Zhu J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53(1):247-273.
doi: 10.1146/arplant.2002.53.issue-1 |
| [43] |
Biscarini F, Cozzi P, Casella L, et al. Genome-wide association study for traits related to plant and grain morphology, and root architecture in temperate rice accessions. PLoS ONE, 2016, 11 (5):e0155425.
doi: 10.1371/journal.pone.0155425 |
| [44] |
Liu S P, Wang J R, Wang L, et al. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Research, 2009, 19(9):1110-1119.
doi: 10.1038/cr.2009.70 |
| [45] | 张怡, 李建国, 张文君. 水稻根系分泌物研究进展. 植物营养与肥料学报, 2024, 30(10):1987-1999. |
| [46] |
Basirat M, Mousavi S M, Abbaszadeh S, et al. The rhizosheath: a potential root trait helping plants to tolerate drought stress. Plant and Soil, 2019, 445(4):565-575.
doi: 10.1007/s11104-019-04334-0 |
| [47] | Zhou N, Zhao S, Tian C Y. Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiology Letters, 2017, 364(11):fnx091. |
| [48] | Ullah A, Tariq A, Zeng F J, et al. Drought priming improves tolerance of Alhagi sparsifolia to subsequent drought: a coordinated interplay of phytohormones, osmolytes, and antioxidant potential. Plant Stress, 2024,12:100469. |
| [49] | Albert K R, Ro-Poulsen H, Mikkelsen T N, et al. Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant,Cell & Environment, 2011, 34(7):1207-1222. |
| [50] |
Dubois M, Van D B L, Inzé D. The pivotal role of ethylene in plant growth. Trends in Plant Science, 2018, 23(4):311-323.
doi: S1360-1385(18)30015-3 pmid: 29428350 |
| [51] |
Morgan P W, Drew M C. Ethylene and plant responses to stress. Physiologia Plantarum, 1997, 100(3):620-630.
doi: 10.1111/ppl.1997.100.issue-3 |
| [52] | Jones D L, Nguyen C, Finlay R D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant and Soil, 2009, 321(1/2):5-33. |
| [53] |
Moore J A M, Jiang J, Patterson C M, et al. Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes. Journal of Ecology, 2015, 103(6):1442-1453.
doi: 10.1111/jec.2015.103.issue-6 |
| [54] |
Zhou X G, Zhang J Y, u Rahman M K, et al. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Molecular Plant, 2023, 16(5):849-864.
doi: 10.1016/j.molp.2023.03.009 |
| [55] |
Han M G, Chen Y, Li R, et al. Root phosphatase activity aligns with the collaboration gradient of the root economics space. New Phytologist, 2022, 234(3):837-849.
doi: 10.1111/nph.v234.3 |
| [56] |
Coskun D, Britto D T, Shi W M, et al. How plant root exudates shape the nitrogen cycle. Trends in Plant Science, 2017, 22(8):661-673.
doi: S1360-1385(17)30093-6 pmid: 28601419 |
| [57] | Korenblum E, Dong Y, Szymanski J, et al. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(7):3874-3883. |
| [58] | Kumar G A, Kumar S, Bhardwaj R, et al. Recent advancements in multifaceted roles of flavonoids in plant-rhizomicrobiome interactions. Frontiers in Plant Science, 2024,14:1297706. |
| [59] | Xie J B, Dawwam G E, Sehim A E, et al. Drought stress triggers shifts in the root microbial community and alters functional categories in the microbial gene pool. Frontiers in Microbiology. 2021,12:744897. |
| [1] | 刘晴, 孙露宏, 高世伟, 刘宇强, 常汇琳, 马成, 王婧泽, 王翠玲, 聂守军. 水稻叶片的生理性状和形态特征受铬胁迫的影响研究[J]. 作物杂志, 2026, (1): 143151 |
| [2] | 高艳梅, 冯鹏睿, 陈薇薇, 张萌, 张永清. 抗旱性藜麦幼苗对干旱胁迫的生理响应[J]. 作物杂志, 2026, (1): 182188 |
| [3] | 闸雯俊, 李行润, 周发松, 冯芳, 吴边, 陈俊孝, 石少阶, 周雷, 王静, 游艾青. 水稻光温敏不育系19XS的选育及其特性分析[J]. 作物杂志, 2026, (1): 914 |
| [4] | 陈雷, 唐茂艳, 张战营, 钟晓媛, 高国庆, 张晓丽, 梁天锋, 潘英华. 花期高温胁迫下水稻种质资源的外观品质分析与评价[J]. 作物杂志, 2025, (6): 132139 |
| [5] | 孙强, 阮辛森, 周志豪, 孙会娟, 徐冉, 凌冬, 赵翠荣. 不同类型水稻品种表型性状遗传多样性分析[J]. 作物杂志, 2025, (6): 2836 |
| [6] | 刘松涛, 蒋超, 史涵博, 闫立楠, 赵海超, 卢海博, 栗慧, 黄智鸿. 玉米ZmPOD基因克隆、生物信息学分析及功能验证[J]. 作物杂志, 2025, (6): 3744 |
| [7] | 滕文, 叶凡, 周舟, 王屿乐, 刘立军. 小麦和油菜秸秆还田处理对盐胁迫下水稻产量和品质的影响[J]. 作物杂志, 2025, (5): 1118 |
| [8] | 植藓闳, 纪子贤, 许镇旺, 谭恩, 梁日深, 马帅鹏, 唐辉武. 水稻CYP450家族基因Os78A5的表达分析[J]. 作物杂志, 2025, (5): 135141 |
| [9] | 彭彬峰, 陆楚盛, 尹媛红, 朱菲菲, 叶群欢, 潘俊峰, 刘彦卓, 胡香玉, 胡锐, 李妹娟, 王昕钰, 梁开明, 傅友强. 高温胁迫下铵硝混配营养促进水稻生长的生理机制[J]. 作物杂志, 2025, (5): 165170 |
| [10] | 都晗萌, 陈雨琼, 刘若彤, 陈英龙, 戴其根, 张洪程, 廖萍. 盐胁迫下喷施矮壮素和施用石膏对水稻产量及倒伏特性的影响[J]. 作物杂志, 2025, (5): 2934 |
| [11] | 孙宪印, 张继波, 吕广德, 亓晓蕾, 孙盈盈, 米勇, 牟秋焕, 尹逊栋, 王瑞霞, 钱兆国, 高明刚. 旱地与补灌条件下不同基因型小麦高产稳产性比较[J]. 作物杂志, 2025, (4): 104110 |
| [12] | 杨林生, 习敏, 涂德宝, 李忠, 周永进, 许有尊, 孙雪原, 吴文革. 长江三角洲地区主要类型水稻生产资源投入及碳、氮足迹评估[J]. 作物杂志, 2025, (4): 150156 |
| [13] | 陶祖豪, 王慰亲, 郑华斌, 向军, 唐启源. 水肥及化控对晚稻有序机抛秧秧苗素质的影响[J]. 作物杂志, 2025, (4): 224230 |
| [14] | 张智涵, 姚杰, 张占田, 卞福花, 张紫然, 陈平, 陈海宁, 刘保友. 5-氨基乙酰丙酸对干旱胁迫下黄瓜苗期生长和土壤酶活性的影响[J]. 作物杂志, 2025, (4): 245250 |
| [15] | 侯晓敏, 申惠波, 董守坤, 闫锋, 董扬, 赵富阳, 李清泉, 左月桃. 甲哌鎓缓解大豆幼苗叶片干旱胁迫的生理效应[J]. 作物杂志, 2025, (3): 133140 |
|
||