Crops ›› 2021, Vol. 37 ›› Issue (3): 51-56.doi: 10.16035/j.issn.1001-7283.2021.03.008
Previous Articles Next Articles
Xiang Chao1(), Sun Suli2, Zhu Zhendong2, Zong Xuxiao2(), Yang Tao2, Liu Rong2, Yang Mei1, Xian Dongfeng1, Yang Xiuyan1
[1] | Faostat. . Data Crops. (2020-12-22)[2020-12-29]. http://www.fao.org/faostat/en/#data/QC. |
[2] |
Warkentin T, Rashid K, Xue A . Fungicidal control of powdery mildew in field pea. Canadian Journal of Plant Science, 1996,76(4):933-935.
doi: 10.4141/cjps96-156 |
[3] |
Fondevilla S, Cubero J, Rubiales D . Confirmation that the Er3 gene,conferring resistance to Erysiphe pisi in pea,is a different gene from er1 and er2 genes. Plant Breeding, 2011,130(2):281-282.
doi: 10.1111/pbr.2011.130.issue-2 |
[4] |
Ghafoor A, McPhee K . Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica, 2012,186(3):593-607.
doi: 10.1007/s10681-011-0596-6 |
[5] |
Sun S, Fu H, Wang Z , et al. Discovery of a novel er1 allele conferring powdery mildew resistance in Chinese pea (Pisum sativum L.) landraces. PLoS ONE, 2016,11(1):e0147624.
doi: 10.1371/journal.pone.0147624 |
[6] |
Harland S . Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity, 1948,2(Pt 2):263-269.
doi: 10.1038/hdy.1948.15 |
[7] |
Heringa R, Norel A V, Tazelaar M . Resistance to powdery mildew (Erisyphe polygoni DC) in peas (Pisum sativum L.). Euphytica, 1969,18(2):163-169.
doi: 10.1007/BF00035687 |
[8] |
Fondevilla S, Carver T L W, Moreno M T , et al. Macroscopic and histological characterisation of genes er1 and er2 for powdery mildew resistance in pea. European Journal of Plant Pathology, 2006,115(3):309-321.
doi: 10.1007/s10658-006-9015-6 |
[9] |
Fondevilla S, Torres A M, Moreno M T , et al. Identification of a new gene for resistance to powdery mildew in Pisum fulvum,a wild relative of pea. Breeding Science, 2007,57(2):181-184.
doi: 10.1270/jsbbs.57.181 |
[10] | Ondřej M, Dostálová R, Odstrčilová L . Response of Pisum sativum germplasm resistant to Erysiphe pisi to inoculation with Erysiphe baeumleri,a new pathogen of peas. Plant Protection Science, 2005(41):95-103. |
[11] |
Attanayake R N, Glawe D A, Mcphee K E , et al. Erysiphe trifolii-a newly recognized powdery mildew pathogen of pea. Plant Pathology, 2010,59(4):712-720.
doi: 10.1111/ppa.2010.59.issue-4 |
[12] |
Fondevilla S, Chattopadhyay C, Khare N , et al. Erysiphe trifolii is able to overcome er1 and Er3,but not er2,resistance genes in pea. European Journal of Plant Pathology, 2013,136(3):557-563.
doi: 10.1007/s10658-013-0187-6 |
[13] |
Tiwari K R, Penner G A, Warkentin T D , et al. Pathogenic variation in Erysiphe pisi,the causal organism of powdery mildew of pea. Canadian Journal of Plant Pathology, 1997,19(3):267-271.
doi: 10.1080/07060669709500522 |
[14] |
Tiwari K R, Penner G A, Warkentin T D . Inheritance of powdery mildew resistance in pea. Canadian Journal of Plant Science, 1997,77(3):307-310.
doi: 10.4141/P96-157 |
[15] |
Fondevilla S, Rubiales D . Powdery mildew control in pea. A review. Agronomy for Sustainable Development, 2012,32(2):401-409.
doi: 10.1007/s13593-011-0033-1 |
[16] |
Sun S, Wang Z, Fu H , et al. Resistance to powdery mildew in the pea cultivar Xucai 1 is conferred by the gene er1. The Crop Journal, 2015,3(6):489-499.
doi: 10.1016/j.cj.2015.07.006 |
[17] |
Timmerman G M, Frew T J, Weeden N F , et al. Linkage analysis of er-1,a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C.). Theoretical and Applied Genetics, 1994,88(8):1050-1055.
doi: 10.1007/BF00220815 pmid: 24186261 |
[18] |
Tiwari K, Penner G, Warkentin T . Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er-1 in pea. Genome, 1998,41(3):440-444.
doi: 10.1139/g98-014 |
[19] |
Srivastava R K, Mishra S K, Singh A K , et al. Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene ‘er1’ in pea (Pisum sativum L.). Euphytica, 2012,186(3):855-866.
doi: 10.1007/s10681-012-0650-z |
[20] |
Katoch V, Sharma S, Pathania S , et al. Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group Ⅲ. Molecular Breeding, 2010,25(2):229-237.
doi: 10.1007/s11032-009-9322-7 |
[21] |
Fondevilla S, Rubiales D, Moreno M T , et al. Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Molecular Breeding, 2008,22(2):193-200.
doi: 10.1007/s11032-008-9166-6 |
[22] |
Kreplak J, Madoui M-A, Cápal P , et al. A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019,51(9):1411-1422.
doi: 10.1038/s41588-019-0480-1 |
[23] |
Kulaeva O A, Zhernakov A I, Afonin A M , et al. Pea Marker Database (PMD) - A new online database combining known pea (Pisum sativum L.) gene-based markers. PLoS ONE, 2017,12(10):e0186713.
doi: 10.1371/journal.pone.0186713 |
[24] | 彭化贤, 姚革, 贾瑞林 , 等. 豌豆抗白粉病资源鉴定研究. 西南农业大学学报, 1991(4):20-22. |
[25] | 曾亮, 李敏权, 杨晓明 . 豌豆种质资源白粉病抗性鉴定. 草原与草坪, 2012,32(4):35-38. |
[26] | 陆建英, 杨晓明, 王昶 , 等. 抗白粉病豌豆种质资源田间筛选. 植物保护, 2015(3):154-158. |
[27] | 王仲怡, 包世英, 段灿星 , 等. 豌豆抗白粉病资源筛选及分子鉴定. 作物学报, 2013,39(6):1030-1038. |
[28] | 付海宁, 孙素丽, 朱振东 , 等. 加拿大豌豆品种(系)抗白粉病表型和基因型鉴定. 植物遗传资源学报, 2014,15(5):1028-1033. |
[29] |
Pavan S, Schiavulli A, Appiano M , et al. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theoretical and Applied Genetics, 2011,123(8):1425-1431.
doi: 10.1007/s00122-011-1677-6 |
[30] |
Humphry M, Reinstaedler A, Ivanov S , et al. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Molecular Plant Pathology, 2011,12(9):866-878.
doi: 10.1111/j.1364-3703.2011.00718.x pmid: 21726385 |
[31] |
Santo T, Rashkova M, Alabaça C , et al. The ENU-induced powdery mildew resistant mutant pea (Pisum sativum L.) lines S (er1mut1) and F (er1mut2) harbour early stop codons in the PsMLO1 gene. Molecular breeding, 2013,32(3):723-727.
doi: 10.1007/s11032-013-9889-x |
[32] |
Sun S, Deng D, Wang Z , et al. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew. Theoretical and Applied Genetics, 2016,129(5):909-919.
doi: 10.1007/s00122-016-2671-9 |
[33] | 王仲怡, 付海宁, 孙素丽 , 等. 豌豆品系X9002抗白粉病基因鉴定. 作物学报, 2015,41(4):515-523. |
[34] |
Liu S M, O'Brien L, Moore S G , et al. A single recessive gene confers effective resistance to powdery mildew of field pea grown in northern New South Wales. Australian Journal of Experimental Agriculture, 2003,43(4):373-378.
doi: 10.1071/EA01142 |
[35] |
Ek M, Eklund M, Von P R , et al. Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas, 2005,142(2005):86-91.
pmid: 16970617 |
[1] | Li Qiong, Chang Shihao, Wu Tingting, Geng Zhen, Yang Qingchun, Shu Wentao, Li Jinhua, Zhang Donghui, Zhang Baoliang. Analysis of Genetic Diversity and Genetic Relationship for 120 Soybean Germplasms [J]. Crops, 2021, 37(4): 51-58. |
[2] | Yu Tianyi, Zheng Yaping, Qiu Shaofen, Jiang Daqi, Wu Zhengfeng, Zheng Yongmei, Sun Xuewu, Shen Pu, Wang Caibin, Zhang Jiancheng. Effects of Calcium (Ca) Application in Acidified Soil on Ca Absorption, Utilization and Yield of Different Peanut Varieties (Lines) [J]. Crops, 2021, 37(4): 80-85. |
[3] | Jia Ruiling, Zhao Xiaoqin, Nan Ming, Chen Fu, Liu Yanming, Wei Liping, Liu Junxiu, Ma Ning. Genetic Diversity Analysis and Comprehensive Assessment of Agronomic Traits of 64 Tartary Buckwheat Germplasms [J]. Crops, 2021, 37(3): 19-27. |
[4] | Li Mengyu, Gao Chuang, Li Qiaoyun, Xu Kaige, Wang Siyu, Niu Jishan. Identification and Correlation Analysis of Wheat Cultivars (Lines) Resistance to Leaf Blight Caused by Bipolaris sorokiniana at Seedling Stage and Filling Stage [J]. Crops, 2021, 37(3): 40-45. |
[5] | Wang Tong, Zhao Xiaodong, Zhen Pingping, Chen Jing, Chen Mingna, Chen Na, Pan Lijuan, Wang Mian, Xu Jing, Yu Shanlin, Chi Xiaoyuan, Zhang Jiancheng. Genome-Wide Identification and Characteristic Analyzation of the TCP Transcription Factors Family in Peanut [J]. Crops, 2021, 37(2): 35-44. |
[6] | Suo Yanyan, Zhang Xiang, Si Xianzong, Li Liang, Yu Qiong, Yu Hui. Effects of Phosphorus and Calcium Applications on the Growth, Yield, and Phosphorus and Calcium Use Efficiency of Peanut [J]. Crops, 2021, 37(1): 187-192. |
[7] | Pan Xiaoxue, Hu Mingyu, Wang Zhongwei, Wu Hong, Lei Kairong. Evaluation of Agronomic Traits and Cold Tolerance at Germination Stage in Rice (Oryza sativa L.) Germplasms [J]. Crops, 2021, 37(1): 47-53. |
[8] | Chen Weiguo, Zhang Zheng, Shi Yugang, Cao Yaping, Wang Shuguang, Li Hong, Sun Daizhen. Drought-Tolerance Evaluation of 211 Wheat Germplasm Resources [J]. Crops, 2020, 36(4): 53-63. |
[9] | Qi Bingjie, Wang Min, Zhang Zhiyong, He Xin, Liu Jinghui. Diversity Analysis of Mineral Elements in Oat Germplasm Resources [J]. Crops, 2020, 36(4): 72-78. |
[10] | Gong Dan, Wang Suhua, Cheng Xuzhen, Wang Lixia. Construction of SSR Fingerprints and Diversity Analysis of a Cowpea Applied Core Collection [J]. Crops, 2020, 36(4): 79-83. |
[11] | Liu Weixing,He Qunling,Zhang Fengye,Fan Xiaoyu,Chen Lei,Li Ke,Wu Jihua. AMMI Model Analysis on Regional Trials of Large-Seeded Peanut Varieties [J]. Crops, 2020, 36(2): 60-64. |
[12] | Sun Ruidong,Zang Zhenyuan,Ci Jiabin,Yang Wei,Ren Xuejiao,Jiang Liangyu,Yang Weiguang. Identification of Resistance and Analysis of Resistance Source for Exserohilum turcicum in Maize Inbred Lines [J]. Crops, 2020, 36(2): 65-70. |
[13] | Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers [J]. Crops, 2019, 35(5): 15-21. |
[14] | Lü Wei,Han Junmei,Ren Guoxiang,Wen Fei,Wang Ruopeng,Liu Wenping. Genetic Diversity Analysis of Sesame Germplasm Resources in Shanxi [J]. Crops, 2019, 35(5): 57-63. |
[15] | Li Jing,Nan Ming. Analysis of Agronomic Characters and Genetic Diversity of 62 Winter Wheat Germplasms from Russia and Ukraine in Northwest China [J]. Crops, 2019, 35(5): 9-14. |
|