Crops ›› 2023, Vol. 39 ›› Issue (2): 238-244.doi: 10.16035/j.issn.1001-7283.2023.02.034

Previous Articles     Next Articles

Screening and Identification of Biocontrol Fungi against Hirschmanniella sp. and Analysis of Nematocidal Activity

Jia Luming(), Mo Aisu, Mo Yixue, Wu Haiyan()   

  1. Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety/Agricultural College of Guangxi University, Nanning 530004, Guangxi, China
  • Received:2021-08-04 Revised:2021-10-13 Online:2023-04-15 Published:2023-04-11

Abstract:

Hirschmanniella sp. is common in all rice regions of the world, which causes some economic losses of rice production. From the nine strains with good virulence against root-knot nematodes, we selected the strains with good virulence against of rice latent root nematodes. The results showed that ZW-1 and XO-2 had high nematocidal activities against Hirschmanniella sp., and the mortality rate in 2.5×dilution for 72h were 93.7% and 96.7%, respectively, with LC50 values of 90.4451 and 76.3875μL/mL, respectively. Strains ZW-1 and XO-2 were identified as Aspergillus japonicus and A.niger, respectively, based on morphological and rDNA-ITS molecular analysis. The discovery of two biocontrol fungal strains provides new microbial resources for the biological control of plant nematode diseases.

Key words: Hirschmanniella sp., Biocontrol fungus, Screening, Nematocidal activity

Table 1

Mortality rate of Hirschmanniella sp. exposure to 2.5 times dilution of Czapek culture solution %"

处理
Treatment
处理时间Incubation time
24h 48h 72h
2.5倍稀释液2.5 times dilution 0.00±0.00a 0.00±0.00a 0.74±0.74a
水Water 0.00±0.00a 0.00±0.00a 0.00±0.00a

Fig.1

Mortality rates of Hirschmanniella sp. exposure to five times dilution of fermentation filtrates with different duration time Different letters indicate significant difference (P < 0.05). The same below"

Fig.2

The shape of nematode exposure to five times ZW-1 and XO-2 fermentation filtrates after 72h a: normal shape of Hirschmanniella sp.; b-c: the shapes of Hirschmanniella sp. treated with ZW-1 and XO-2 fermentation filtrates; bar=100μm"

Fig.3

The morphology of ZW-1 strain a: colony morphology after one week on PDA; b-c: spore morphology; bar=20μm"

Fig.4

The morphology of XO-2 stain a: colony morphology after one week on PDA; b-c: spore morphology; bar=20μm"

Fig.5

Mortality rate of Hirschmanniella sp. Exposure to 2.5-fold dilution of ZW-1 strain of different time fermentation filtrates"

Fig.6

Mortality rate of Hirschmanniella sp. Exposure to different dilution times of ZW-1 strain two-week fermentation filtrates"

Fig.7

Mortality rate of Hirschmanniella sp. Exposure to 2.5-fold dilution of XO-2 strain of different time fermentation filtrates"

Fig.8

Mortality rate of Hirschmanniella sp. Exposure to different dilution times of XO-2 strain two-week fermentation filtrates"

Table 2

Toxicity of ZW-1 and XO-2 strains fermentation filtrates with two-week fermenting on Hirschmanniella sp."

处理时间
Incubation time (h)
发酵液
Fermentation filtrate
斜率
Slope (±SE)
相关系数
Correlation coefficient
LC50(95%置信区间)
LC50 (95% CI) (μL/mL)
24 ZW-1 1.7206(±0.2582) 0.9678** 384.9935(235.8036~628.5741)
XO-2 1.3485(±0.1992) 0.9688** 447.8656(266.6069~752.3573)
48 ZW-1 2.3146(±0.3341) 0.9701** 136.5220(102.0527~182.6336)
XO-2 2.3538(±0.2537) 0.9923*** 128.9058(111.7788~148.6570)
72 ZW-1 2.3769(±0.2791) 0.9799** 90.4451(72.0930~113.4688)
XO-2 2.6327(±0.1341) 0.9961*** 76.3875(69.0175~84.5446)
[1] 周银丽, 尹体刘, 白建波, 等. 杏仁等6种植物提取液对水稻潜根线虫的抑杀作用. 湖北农业科学, 2011, 50(6):1153-1155.
[2] 尹淦鏐, 冯志新. 农作物寄生线虫的初步调查鉴定. 植物保护学报, 1981, 8(2):111-126.
[3] 胡先奇, 余敏, 林丽飞, 等. 云南水稻潜根线虫种类及生态分布研究. 中国农业科学, 2004, 37(5):681-686.
[4] 谢家廉, 杨芳, 黄文坤, 等. 近年水稻主要线虫病害的研究进展. 植物保护学报, 2017, 44(6):940-949.
[5] Campos-Garcia J, Martinez D S T, Rezende K F O, et al. Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes. Ecotoxicology and Environmental Safety, 2016, 133:481-488.
doi: 10.1016/j.ecoenv.2016.07.041 pmid: 27543744
[6] Abd-Elgawad M M M, Askary T H. Factors affecting success of biological agents used in controlling the plant-parasitic nematodes. Egyptian Journal of Biological Pest Control, 2020, 30:17.
doi: 10.1186/s41938-020-00215-2
[7] Haarith D, Kim D G, Strom N B, et al. In vitro screening of a culturable soybean cyst nematode cyst mycobiome for potential biological control agents and biopesticides. Phytopathology, 2020, 110:1388-1397.
doi: 10.1094/PHYTO-01-20-0015-R pmid: 32286919
[8] Wu H Y, Zhang L Y, Zhou X B. Effects of Myrothecium verrucaria ZW-2 fermentation filtrates on various plant-parasitic nematodes. Journal of Plant Diseases and Protection, 2020, 127:545-552.
doi: 10.1007/s41348-020-00336-8
[9] 段玉玺, 靳莹莹, 王胜君, 等. 生防菌株Snef85的鉴定及其发酵液对不同种类线虫的毒力. 植物保护学报, 2008, 35(2):132-136.
[10] Kiewnick S, Sikora R A. Evaluation of Paecilomyces lilacinus strain 251 for the biological control of the northern root-knot nematode Meloidogyne hapla chitwood. Nematology, 2006, 8:69-78.
doi: 10.1163/156854106776179926
[11] 孙漫红, 刘杏忠, 晋治波. 淡紫拟青霉对大豆胞囊线虫卵及2龄幼虫的影响. 植物保护学报, 2002, 29(1):57-61.
[12] 张壤心, 梁英辉, 逯昕明, 等. 杀松材线虫活性菌株筛选及活性成分分析. 吉林农业大学学报, 2018, 40(2):157-163.
[13] Lee S I, Lee K J, Chun H H, et al. Process development of oxalic acid production in submerged culture of Aspergillus niger F22 and its biocontrol efficacy against the root-knot nematode Meloidogyne incognita. Bioprocess and Biosystems Engineering, 2017, 41:345-352.
doi: 10.1007/s00449-017-1867-y
[14] Jin C Z, Liu G Y, Liu X, et al. Nematicidal activity of ten kinds of plant extract against Hirschmanniella spp.. Agricultural Science and Technology, 2014, 15(12):2164-2166,2200.
[15] 周银丽, 胡先奇, 白建波, 等. 几种植物提取液对水稻潜根线虫的室内抑杀作用. 江苏农业科学, 2012, 40(3):103-104.
[16] Shemshura O N, Bekmakhanova N E, Mazunina M N, et al. Isolation and identification of nematode-antagonistic compounds from the fungus Aspergillus candidus. Fems Microbiol Letters, 2016, 363(5):fnw026.
doi: 10.1093/femsle/fnw026
[17] Jin N, Liu S M, Peng H, et al. Isolation and characterization of Aspergillus niger NBC 001 underlying suppression against Heterodera glycines. Scientific Reports, 2019, 9:591.
doi: 10.1038/s41598-018-37827-6 pmid: 30679719
[18] He Q, Wang D Y, Li B X, et al. Nematicidal evaluation and active compounds isolation of Aspergillus japonicus ZW 1 against root-knot nematodes Meloidogyne incognita. Agronomy, 2020, 10:1222.
doi: 10.3390/agronomy10091222
[19] Jang J Y, Choi Y H, Shin T S, et al. Biological control of Meloidogyne incognita by Aspergillus niger F 22 producing oxalic acid. PLoS ONE, 2016, 11:e0156230.
doi: 10.1371/journal.pone.0156230
[20] Li J, Zou C G, Xu J P, et al. Molecular mechanisms of nematode- nematophagous microbe interactions:basis for biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 2015, 53:67-95.
doi: 10.1146/phyto.2015.53.issue-1
[21] Naz I, Khan R A A, Masood T, et al. Biological control of root knot nematode, Meloidogyne incognita, in vitro, greenhouse and field in cucumber. Biological Control, 2020, 152:104429.
doi: 10.1016/j.biocontrol.2020.104429
[22] Affokpon A, Coyne D L, Htay C C, et al. Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biology and Biochemistry, 2011, 43:600-608.
doi: 10.1016/j.soilbio.2010.11.029
[1] Zhao Xiaoqin, Jia Ruiling, Liu Junxiu, Liu Yanming, Wen Yinhua, Shi Lili, Zhang Juanning, Ma Ning. Agronomic Traits and Genetic Diversity Analysis of 120 Foxtail Millet Germplasms [J]. Crops, 2022, 38(6): 61-69.
[2] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[3] Xiao Mingkun, Liu Guanghua, Song Jiming, Liu Qian, Duan Chunfang, Jiang Tailing, Zhang Linhui, Yan Wei, Shen Shaobin, Zhou Yingchun, Xiong Xiankun, Luo Xin, Bai Lina, Li Yuexian. Analysis of Agronomic Characteristics of Different Cassava Varieties (Lines) and Screening of High-Yielding Varieties (Lines) [J]. Crops, 2022, 38(4): 77-82.
[4] Liu Haidong,Yu Qinglan,Wang Ruisheng,Du Dezhi. Screening of the Rapeseed Resoures for Resistance to Flea Beetle in Spring Rapeseed Region [J]. Crops, 2020, 36(2): 34-40.
[5] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties [J]. Crops, 2019, 35(5): 41-45.
[6] Guo Ruifeng,Ren Yuemei,Yang Zhong,Ren Guangbing,Zhang Shou,Feng Jing. Screening of Chemical Male Killing Agents for Millet [J]. Crops, 2019, 35(5): 64-68.
[7] Zhang Yaowen,Hou Junli,Zhao Xiaoguang,Guan Zhoubo,Li Dianrong,Tian Jianhua,Dong Yuhong,Wang Zhuyun. Comprehensive Identification and Selection System and Method for Rape Germplasm with High Photosynthetic Efficiency [J]. Crops, 2019, 35(4): 69-76.
[8] Zhiyong Hao,Guangdong Yang,Guangwei Qiu,Zunyan Hu,Lichun Wang,Haiyan Wang. Screening of High Carotenoid Resources in Potato [J]. Crops, 2019, 35(2): 71-77.
[9] Si Chen,Xue Yang,Xiukun Yang,Hongmei Yuan,Wengong Huang,Yan Liu,Yubo Yao,Guangwen Wu. Screening Pasmo-Resistant Germplasm Resources from Flax Varieties (Lines) [J]. Crops, 2019, 35(1): 63-67.
[10] Xinling Yang,Qian Yao,Wenli Ping,Yiqiong Ma,Baolin Wang,Guotao Jia,Yongfeng Yang,Hong Cui. Screening of High Aroma Mutants from Progenies of EMS Mutagenized Flue-Cured Tobacco [J]. Crops, 2019, 35(1): 68-74.
[11] Li Chunhong,Lu Xianglong,Zhang Peitong,Su Yanjing,Wang Yiming,Guo Wenqi,Yin Jianmei,Han Xiaoyong,Wang Li,Huo Enjie. Screening Herbicides to Control Weeds for Sweet Sorghum [J]. Crops, 2018, 34(6): 158-161.
[12] Ma Jianhui,Zhang Wenli,Gao Xiaolong,Zhang Daijing,Jiang Lina,Zhai Yanyu,Shao Yun,Li Chunxi. Identification and Expression Analysis of the Whole Glutathione S-Transferase Genome Family in Aegilops tauschii under Abiotic Stress [J]. Crops, 2018, 34(5): 54-62.
[13] Wenfang Cui,Julin Gao,Xiaofang Yu,Zhigang Wang,Jiying Sun,Shuping Hu,Zhijun Su,Min Xie. Screening on Indexes of Nitrogen Efficient Maize Varieties [J]. Crops, 2016, 32(6): 38-43.
[14] Hongyan Zhang,Tao Yang,Jianping Guan,Shenghua Yang,Li Fang,Mengying Du,Xuxiao Zong. Investigation on Faba Bean Germplasm Resistance to Callosobruchus chinensis L. [J]. Crops, 2016, 32(4): 86-92.
[15] . [J]. Crops, 2013, 29(3): 107-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!