Crops ›› 2024, Vol. 40 ›› Issue (2): 249-254.doi: 10.16035/j.issn.1001-7283.2024.02.031

;

Previous Articles     Next Articles

Germplasm Creation and New Variety Breeding for Fusarium Wilt Resistance in Mung Bean

Zhang Zhixiao(), Shen Yingchao, Fan Baojie, Wang Yan, Liu Changyou, Wang Shen, Cao Zhimin, Su Qiuzhu, Shi Huiying, Tian Jing()   

  1. Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences /Hebei Crop Genetics and Breeding Laboratory, Shijiazhuang 050035, Hebei, China
  • Received:2022-12-27 Revised:2023-09-17 Online:2024-04-15 Published:2024-04-15

Abstract:

Fusarium wilt is one of the most serious diseases affecting the yield of mung bean. Chlamydospores of the pathogen have strong resistance to stress and long survival duration in soil, so it is difficult to control them by agricultural and chemical methods. The most economic and effective method is to screen and create germplasm and breed new varieties with disease resistance. The 81 bred lines of mung bean were identified for their resistance to Fusarium wilt by root-cutting and root-soaking inoculation in seedling stage. The results showed that there were obvious resistant differences among the strains. Jilü 23, a new mung bean variety with high resistance to Fusarium wilt, high and stable yield and good quality, was bred through primary yield test, high yield appraisal test, provincial regional test and production test.

Key words: Mung bean, Fusarium wilt, Resistance, New variety

Fig.1

Phenotypes after 14 days of inoculation of disease-resistant and disease-susceptible materials of new strains of mung bean with F.oxysporum"

Table 1

Identification of resistance to Fusarium wilt in new mung bean lines at seedling stage"

序号
Number
品系
Line
病情指数
DI
抗性评价
Resistance evaluation
序号
Number
品系
Line
病情指数
DI
抗性评价
Resistance evaluation
1 HN0913-6-6-1-4-4-1 4.47 HR 8 1105-12 18.02 R
2 HN0913-6-6-1-4-1-1 11.43 HR 9 HN0802-1-2-2-1-1-4 26.55 R
3 0914-13-1-2 4.93 HR 10 HN0913-6-10-3-2-1-3 29.50 R
4 1111反-1 5.91 HR 11 1015-4-1-1 31.59 R
5 HN1012-5-4-2 9.60 HR 12 1110反-3 33.10 R
6 HN1012-6-2-2 14.81 HR 13 1014反-2-3-2 33.47 R
7 1105-7 16.64 R 14 1109-8 34.72 R

Table 2

Agronomic traits and yield performance of resistant lines"

序号
Number
品种(系)
Variety (line)
生育期
Growth
period (d)
株高
Plant height
(cm)
单株分枝数
Branch number
per plant
单株荚数
Pods
per plant
单荚粒数
Seeds per
pod
百粒重
100-seed
weight (g)
产量
Yield
(kg/hm2)
较对照增产率
Yield increase
than control (%)
1 HN0802-1-2-2-1-1-4 65 68.0 4.4 23.4 14.5 6.85 1554.00 23.75*
2 0914-13-1-2 65 74.0 3.2 18.9 10.1 6.63 1438.20 14.53*
3 1015-4-1-1 65 64.0 3.3 12.3 7.5 6.68 1212.60 -3.43
4 1111反-1 65 74.0 3.8 19.6 10.4 6.40 1209.00 -3.73
5 1105-7 65 70.0 3.9 16.3 8.6 6.42 1155.90 -7.96
6 1105-12 65 67.0 3.5 14.5 7.8 6.30 1126.95 -10.26
7 1110反-3 65 86.0 3.4 9.5 5.5 6.93 899.70 -28.36
8 冀绿7号(CK) 65 67.0 3.1 17.5 8.9 6.43 1255.80

Fig.2

Vascular bundle and plant phenotype of mung bean line materials at harvest stage in field disease nursery (a) Vascular bundle at stem base of susceptible line; (b) Plant phenotype of susceptible line at maturity; (c) Vascular bundle at stem base of resistant line; (d) Plant phenotype of resistant line at maturity."

Table 3

Multiple comparison results of yield difference of mung bean varieties (lines) in Hebei regional trial"

序号
Number
品种(系)
Variety (line)
产量
Yield
(kg/hm2)
比对照增产
Yield increase
than control (%)
1 HN0802-1-2-2-1-1-4 1817.6a 9.80
2 保绿201321-7 1765.8ab 6.67
3 保绿942(CK) 1655.4bc 0.00
4 保绿201347-6 1631.2c -1.46
5 廊绿2号 1632.6c -1.38
6 廊绿1号 1621.6c -2.04
7 冀绿0911-1-2 1611.2c -2.67
8 冀绿抗1004-38-2-3-2-3 1569.6c -5.18
9 保绿201326-1 1565.4c -5.44

Table 4

Yield results in different sites of HN0802-1-2-2-1-1-4"

区域
Region
试点
Site
2019年平均产量
Average yield
in 2019 (kg/hm2)
2019年增产率
Yield increase
in 2019 (%)
2020年平均产量
Average yield in
2020 (kg/hm2)
2020年增产率
Yield increase
in 2020 (%)
2年平均产量
Average yield in
two years (kg/hm2)
2年平均增产率
Average yield increase
in two years (%)
位次
Ranking
夏播区
Summer sowing area
石家庄 2078.00 12.26 1885.70 2.82 1981.90 7.57 1
保定 1985.00 0.40 1787.00 0.51 1886.00 0.45 5
唐山 1655.00 -2.42 1769.20 8.35 1712.10 2.86 3
廊坊 1157.00 3.58 1736.40 8.11 1446.70 6.25 1
衡水 553.00 -27.90 1750.00 7.51 1151.50 -3.83 6
邯郸 2740.00 3.01 1310.00 22.43 2025.00 8.58 1
平均Average 1694.70 -1.85 1706.38 8.29 1700.53 3.65 1
春播区
Spring sowing area
张家口 1983.30 -16.00 2081.80 37.95 2032.60 5.04 1
阳原 2690.00 56.40 1920.00 50.00 2305.00 53.67 1
平均Average 2336.65 20.20 2000.90 43.98 2168.80 29.36 1

Table 5

Analysis of yield and stability of test varieties"

序号
Number
品种(系)
Variety (line)
丰产性参数Yield index 稳定性参数Stability index 适应地区
Suitable sites
综合评价
Comprehensive evaluation
产量Yield (kg/hm2) 效应 方差 变异度
1 HN0802-1-2-2-1-1-4 1817.6 0.167 0.024 8.402 E1~E8 很好
2 保绿201321-7 1765.8 0.119 0.021 8.082 E1~E8
3 保绿942(CK) 1655.4 0.004 0.024 9.147 E1~E8 一般
4 保绿201347-6 1631.2 -0.022 0.023 9.094 E1~E8 一般
5 廊绿2号 1632.6 -0.023 0.010 6.138 E1~E8 一般
6 廊绿1号 1621.6 -0.033 0.009 5.663 E1~E8 一般
7 冀绿0911-1-2 1611.2 -0.042 0.061 15.177 E1~E8 一般
8 冀绿抗1004-38-2-3-2-3 1569.6 -0.083 0.028 10.459 E1~E8 较差
9 保绿201326-1 1565.4 -0.088 0.016 8.014 E1~E8 较差

Table 6

Agronomic characteristics of HN0802-1-2-2-1-1-4"

区域
Region
生育期
Growth
period (d)
株高
Plant height
(cm)
单株分枝数
Branch number
per plant
主茎节数
The number of main
stem sections
单株荚数
Pod number
per plant
荚长
Pod length
(cm)
单荚粒数
Grain number
per pod
百粒重
100-seed
weight (g)
春播区Spring sowing area 77.0 46.6 4.1 9.9 30.7 11.8 9.9 7.0
夏播区Summer sowing area 68.0 55.6 3.9 9.0 27.6 12.2 10.5 6.8

Table 7

Yield performance in production test of HN0802-1-2-2-1-1-4"

试点
Site
产量
Yield
(kg/hm2)
对照种产量
Yield of CK
(kg/hm2)
较CK增产率
Yield increase
than CK (%)
石家庄Shijiazhuang 2508.00 1653.00 51.72
保定Baoding 1750.80 1434.90 22.02
唐山Tangshan 1794.00 1662.00 7.94
廊坊Langfang 1545.00 1509.00 2.39
张家口Zhangjiakou 2088.00 1566.00 33.33
平均Average 1937.10 1565.10 23.77
[1] 林汝法, 柴岩, 廖琴, 等. 中国小杂粮. 北京: 中国农业科学技术出版社, 2002.
[2] 程须珍. 绿豆生产技术. 北京: 北京出版集团公司, 2016.
[3] 左拴秀, 郭忠. 立足资源优势发展小杂粮产业. 中国农业资源与区划, 2005, 4(26):42-46.
[4] 梁双波, 程汝宏. 小杂粮在中国种质结构调整中的地位与发展策略. 河北农业科学, 2005, 9(2):93-95.
[5] Kelly L. Fusarium species associated with grain sorghum and mung bean in Queensland. Brisbane: The University of Queensland, 2018.
[6] Sun F F, Sun S L, Zhu L, et al. Confirmation of Fusarium oxysporum as acausal agent of mung bean wilt in China. Crop Protection, 2019, 117:77-85.
doi: 10.1016/j.cropro.2018.11.017
[7] 朱振东, 段灿星. 绿豆病虫害鉴定与防治手册. 北京: 中国农业科学技术出版社, 2012.
[8] Koike S T, Gordon T R. Management of Fusarium wilt of strawberry. Crop Protection, 2015, 73:67-72.
doi: 10.1016/j.cropro.2015.02.003
[9] Bennett R S, Spurgeon D W, DeTar W R, et al. Effcacy of four soil treatments against Fusarium oxysporum f. sp. vasinfectum race 4 on cotton. Plant Disease, 2011, 95(8):967-976.
doi: 10.1094/PDIS-09-10-0696 pmid: 30732107
[10] Dubey S C, Suresh M, Singh B. Evaluation of trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biological Control, 2007, 40(1):118-127.
doi: 10.1016/j.biocontrol.2006.06.006
[11] Mansoor F, Sultana V, Ehteshamul-Haque S. Enhancement of biocontrol potential of Pseudomonas aeruginosa and Paecilomyces lilacinus against root rot of mung bean by a medicinal plant Launaea nudicaulis L.. Pakistan Journal of Botany, 2007, 39(6):2113-2119.
[12] Dhingra O D, Netto R A C. Reservoir and non-reservoir hosts of bean-wilt pathogen, Fusarium oxysporum f. sp. phaseoli. Journal of Phytopathology, 2008, 149(7/8):463-467.
[13] 张海斌, 蒙美莲, 刘坤雨, 等. 不同轮作模式对马铃薯干物质积累、病害发生及产量的影响. 作物杂志, 2019(4):170-175.
[14] 曾莉莎, 林威鹏, 吕顺, 等. 香蕉―甘蔗轮作模式防控香蕉枯萎病的持续效果与土壤微生态机理(Ⅰ). 中国生态农业学报, 2019, 27(2):257-266.
[15] 林威鹏, 曾莉莎, 吕顺, 等. 香蕉―甘蔗轮作模式防控香蕉枯萎病的持续效果与土壤微生态机理(Ⅱ). 中国生态农业学报, 2021, 27(3):348-357.
[16] 郭予元, 吴孔明. 中国农作物病虫害. 北京: 中国农业科学技术出版社, 2014:1001-1003.
[17] Nair R, Schafleitner R, Easdown W, et al. Legume improvement program at AVRDC-the world vegetable center: impact and future prospects. Ratarstvo i Povrtarstvo, 2014, 51(1):55-61.
doi: 10.5937/ratpov51-5488
[18] 杨宇红, 吕红豪, 杨翠荣, 等. 甘蓝枯萎病苗期抗性鉴定技术及抗源筛选. 植物保护学报, 2011, 38(5):425-431.
[19] 李园, 武晶. 普通菜豆镰孢菌枯萎病研究进展. 植物遗传资源学报, 2021, 22(3):603-608.
doi: 10.13430/j.cnki.jpgr.20200930001
[20] Cianchetta A N, Davis R M. Fusarium wilt of cotton: management strategies. Crop Protection, 2015, 73:40-44.
doi: 10.1016/j.cropro.2015.01.014
[21] 朱琳, 孙素丽, 孙菲菲, 等. 绿豆尖镰孢枯萎病抗性鉴定方法. 植物遗传资源学报, 2017, 18(4):696-703.
[22] Sun S L, Zhu L, Sun F F, et al. Pathotype diversity of Fusarium oxysporum f. sp. mungcola causing wilt on mungbean (Vigna radiata). Crop and Pasture Science, 2020, 71(10):873.
doi: 10.1071/CP20164
[23] Ulloa M, Hutmacher R B, Roberts P A, et al. Breeding for Fusarium wilt race 4 resistance in cotton under field and greenhouse conditions. Journal of Cotton Science, 2006, 10(2):114-127.
[24] Yuan S K, Zhou M G. A major gene for resistance to carbendazim, in field isolates of Gibberella zeae. Canadian Journal of Plant Pathology, 2005, 27(1):58-63.
doi: 10.1080/07060660509507194
[25] 孙文姬, 陈其焕, 马存, 等. 棉花种质资源抗枯、黄萎病鉴定. 中国农业科学, 1990, 23(1):89-90.
[1] Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121.
[2] Zhang Ruipu, Wang Na, Wang Kexin, Liu Jindong, Gao Xiaoli. Effects of Plant Growth Regulator S3307 on Physiological Metabolism of Mung Bean [J]. Crops, 2024, 40(2): 198-205.
[3] Liu Fanchao, Fang Shumei, Wang Qingyan, Wang Hanxin, Niu Juanjuan, Liang Xilong. Effects of Different Concentrations of Exogenous Amino Acids on Growth and Related Physiological Indicators of Rice Seedlings [J]. Crops, 2024, 40(2): 71-79.
[4] Lü Zengshuai, Dong Hongye, Wang Peng, Duan Wei, Liu Shengli, Liu Yantao. Progress in Mechanism of Herbicide Resistance and Breeding of Sunflower [J]. Crops, 2024, 40(1): 16-22.
[5] Wang Yueying, Fan Baojie, Cao Zhimin, Wang Yan, Su Qiuzhu, Zhang Zhixiao, Wang Shen, Shi Huiying, Shen Yingchao, Cheng Xuzhen, Liu Changyou, Tian Jing. Genetic Diversity Analysis of Landraces and Improved Varieties of Mung Bean by EST-SSR Markers [J]. Crops, 2024, 40(1): 73-79.
[6] Bai Jinghua, Jia Xiaomei, Wu Yanqing, Wang Yuekun, Song Weiyang, Liu Yinuo. Ability of DSE against Abiotic Stresses and Improving Drought Resistance of Solanum tuberosum [J]. Crops, 2023, 39(6): 150-159.
[7] Dong Haosheng, Wang Qi, Yan Peng, Xu Yanli, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of ECK on the Lodging Resistance and Yield of Foxtail Millet Stem [J]. Crops, 2023, 39(6): 181-189.
[8] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[9] Xiong Yuting, Zheng Luyao, Jia Wenqi, Li Man, Chen Jianing, Li Kuihua, Gao Yuliang. Isolation and Identification of Antagonistic Actinomycetes Strains against Fusarium Wilt of Cucumber [J]. Crops, 2023, 39(6): 261-269.
[10] Chen Dan, Xiong Furong, Wu Shaoyun, Bai Xiaodong, Zhou Guoyan, Wu Xiaoyang, Cai Qing. Molecular Detection and Geographic Distribution of Stripe Rust Resistance Gene Loci in Yunnan Wheat Landraces [J]. Crops, 2023, 39(6): 41-46.
[11] Ren Honglei, Zhang Fengyi, Han Xinchun, Hong Huilong, Zhu Xiao, Wang Guangjin, Qiu Lijuan. Drought Tolerance Evaluation of Soybean Mini Core Collections [J]. Crops, 2023, 39(6): 94-100.
[12] Chen Yuanyuan, Li Guangsheng, Liu Yang, He Yuqi, Zhou Meiliang, Fang Zhengwu. Molecular Cloning and Functional Identification of Resistance Gene FtTIR of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(4): 44-51.
[13] Su Xiaoyu, Gao Tongmei, Zhang Pengyu, Li Feng, Wu Yin, Wang Dongyong, Tian Yuan, Wei Shuangling. Comprehensive Evaluation of Heat Resistance of Sesame Seedlings Based on Principal Component Analysis and Membership Function Method [J]. Crops, 2023, 39(4): 52-59.
[14] Wen Shenghui, Yang Junwei, Wang Yang, Li Gongjian, Weng Jianfeng, Duan Canxing, Jia Xin, Wang Jianjun. Research Progress on Discovery of Resistance Genes and Molecular Breeding Utilization of Fungal Diseases in Maize [J]. Crops, 2023, 39(3): 1-11.
[15] Li Guangsheng, Lu Xiang, Lai Dili, Zhang Kaixuan, Wang Haihua, Zhou Meiliang. Molecular Cloning and Functional Analysis of Resistance Gene FtABCG12 of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(3): 43-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!