Crops ›› 2016, Vol. 32 ›› Issue (2): 8-13.doi: 10.16035/j.issn.1001-7283.2016.02.002

;

Previous Articles     Next Articles

QTL Mapping of Plant Height in Maize

Zheng Lei1,2,Zhou Yu1,Zeng Xing1,Di Hong1,Weng Jianfeng2,Li Xinhai2,Wang Zhenhua1   

  1. 1 College of Agriculture,Northeast Agricultural University,Harbin 150030,Heilongjiang,China
    2 Institute of Crop Science,Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding,Beijing 100081,China
  • Received:2015-12-21 Revised:2016-02-01 Online:2016-04-15 Published:2018-08-26
  • Contact: Xinhai Li,Zhenhua Wang

Abstract:

Plant height is an important agronomic trait that significantly effects grain yield, fertilizer tolerance and lodging resistance in maize. With the development of molecular biology, numbers of studies on QTL mapping of plant height have been carried out in maize. In this research, QTL mapping and gene cloning of plant height were summarized in mazie. With the meta-analysis, 187 QTL underlying plant height were integrated and analyzed, and 10 “consensus” QTL were obtained. In the “consistency” QTL confidence interval, candidate genes involving in the regulation of plant height were explored.

Key words: Maize, Plant height, QTL, Meta-analysis, Candidate gene

Fig.1

Consensus map of maize plant height QTLs The locations and names of molecular marker are located to the right of the linkage groups, QTLs are located to the left of the linkage groups, the vertical lines represent the QTL confidence interval and the horizontal lines represent the LOD value of QTLs."

Table 1

Meta-analysis of maize plant height QTLs"

一致性QTL
Meta-QTL
bin Meta-QTL置信区间
Interval of Meta-QTL(cM)
物理图谱区间
Interval of physical map(Mb)
左标记
Left marker
右标记
Right marker
MQTL1 2.01 82.18~89.07 3.126~3.389 isu144a IDP7335
MQTL2 3.05 364.00~368.85 158.892~166.073 pza00828 drh1
MQTL3 4.04 231.51~250.84 27.094~41.785 IDP510 bm3
MQTL4 4.09 608.84~623.07 231.480~234.429 IDP1646 CL14140_1
MQTL5 5.03 218.96~230.61 18.015~23.783 umc2512 pco093291
MQTL6 5.05 406.04~418.89 175.652~182.584 mmp47 uaz79
MQTL7 5.06 529.37~538.29 203.678~204.631 agrp90 umc2201
MQTL8 9.05 351.87~364.46 133.207~138.424 umc1387 umc1494
MQTL9 10.03 219.66~224.03 82.165~85.645 uaz100(prl) bnlg1655
MQTL10 10.04 294.65~304.09 121.417~128.374 pseudo(gpa1)1 sam1

Table 2

Genes of maize plant height trait"

基因
Gene
染色体
Chromosome
bin 基因
Gene
染色体
Chromosome
bin
ct2 1 1.01 na1 3 3.07
br2 1 1.06 mn5 5 5.05
an1 1 1.08 na2 5 5.03
d8 1 1.09 d9 5 5.01
mpl1 1 1.09 sxd1 5 5.04
rd1 1 1.11 bv1 5 5.04
d5 2 2.02 td1 5 5.04
wrp1 2 2.04 rd2 6 6.00
d10 2 2.08 tan1 6 6.05
d1 3 3.02 ct1 8 8.01
sdw2 3 3.05 clt1 8 8.05
yd2 3 3.06 d2 9 9.03

Table 3

The candidate gene of maize plant height in the Meta-QTL confidence interval"

一致性QTL Meta-QTL bin 候选基因Candidate gene 功能注释Function annotation
MQTL1 2.01 GRMZM2G119941 cell wall invertase Incw4
GRMZM2G034840 auxin response factor 4
MQTL2 3.05 GRMZM2G004161 TAZ transcription factor
GRMZM2G025742 auxin efflux carrier component 6
MQTL3 4.04 AC196475.3_FG004 brown midrib3
GRMZM2G402653 putative oxysterol binding domain family protein
GRMZM2G420812 SAUR31-auxin-responsive SAUR family member
GRMZM2G059544 IAA25-auxin-responsive Aux/IAA family member
MQTL5 5.03 ZEAMMB73_063572 SAUR56-auxin-responsive SAUR family member
ZEAMMB73_450421 gibberellin 20 oxidase 2
MQTL6 5.05 GRMZM2G459166 F-box protein GID2
MQTL9 10.03 GRMZM2G016254 terpene synthase 6
[1] Duvick D N . Genetic progress in yield of United States maize(Zea mays L.). Maydica, 2005,50:193-202.
[2] Robertson D S . A possible technique for isolating genic DNA for quantitative traits in plants. Journal of Theoretical Biology, 1985,117(1):1-10.
doi: 10.1016/S0022-5193(85)80161-2
[3] Jensen J . Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci. Theoretical & Applied Genetics, 1989,78(5):613-618.
[4] Edwards M D, Helentjaris T, Wright S , et al. Molecular-marker-facilitated investigations of quantitative trait loci in maize. Theoretical & Applied Genetics, 1992,83(6/7):765-774.
[5] Melchinger A E, Utz H F, Schön C C . Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998,149(1):383-403.
[6] Veldboom L R, Lee M, Woodman W L . Molecular marker-facilitated studies in an elite maize population:I.Linkage analysis and determination of QTL for morphological traits. Theoretical & Applied Genetics, 1994,88(1):7-16.
[7] Schön C C, Melchinger A E . RFLP mapping in maize:quantitative trait loci affecting testcross performance of elite European flint lines. Crop Science, 1994,34(2):378-389.
doi: 10.2135/cropsci1994.0011183X003400020014x
[8] 王翠玲, 孙朝辉, 库丽霞 , 等. 利用永久F2群体在不同光周期环境下定位玉米株高QTL. 作物学报, 2011,37(2):271-279.
doi: 10.3724/SP.J.1006.2011.00271
[9] 张志明, 赵茂俊, 荣廷昭 , 等. 玉米SSR连锁图谱构建与株高及穗位高QTL定位. 作物学报, 2007,2(2):341-344.
[10] 杨晓军, 路明, 张世煌 , 等. 玉米株高和穗位高的QTL定位. 遗传, 2009,30(11):1477-1486.
[11] 刘华伟 . 玉米株型相关性状QTL定位与分析. 郑州:河南农业大学, 2009.
[12] 赵文明 . 玉米株型相关性状QTL定位与分析. 郑州:河南农业大学, 2008.
[13] 孙海艳, 蔡一林, 王久光 , 等. 玉米株型性状的QTL定位. 西南大学学报(自然科学版), 2010,32(12):14-18.
[14] 徐德林, 蔡一林, 吕学高 , 等. 玉米株型性状的QTL定位. 玉米科学, 2009,6(6):27-31.
[15] 郭莹 . 利用不同F2群体定位玉米株型性状的QTL. 重庆:西南大学, 2012.
[16] 路明 . 玉米产量及株型性状QTL定位与遗传基础研究. 北京:中国农业科学院, 2007.
[17] 李贤唐 . 玉米四交群体株型及生育期相关性状的QTL分析. 郑州:河南农业大学, 2011.
[18] 孙婷婷 . 玉米遗传图谱构建及重要农艺性状QTL定位. 延吉:延边大学, 2013.
[19] 张君 . 玉米株型及产量相关性状QTL定位与分析. 郑州:河南农业大学, 2010.
[20] 库丽霞 . 玉米株型相关性状分子遗传机理研究. 郑州:河南农业大学, 2010.
[21] 刘鹏飞 . 基于四交群体的玉米耐密性及相关性状QTL定位与分析. 兰州:甘肃农业大学, 2013.
[22] 刘美洲 . 玉米花期、株型、产量性状QTL定位及分析. 石河子:石河子大学, 2008.
[23] Guo B, Sleper D A, Lu P , et al. QTLs associated with resistance to soybean cyst nematode in soybean:Meta-analysis of QTL locations. Crop Science, 2006,46(2):595-602.
doi: 10.2135/cropsci2005.04-0036-2
[24] Teng F, Zhai L H, Liu R X , et al. ZmGA3ox2,a candidate gene for a major QTL,qPH3.1,for plant height in maize. The Plant Journal, 2013,73(3):405-416.
doi: 10.1111/tpj.12038
[25] Xing A, Gao Y, Ye L , et al. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. Journal of Experimental Botany, 2015,66(13):3791.
doi: 10.1093/jxb/erv182
[26] Winkler R G, Helentjaris T . The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. The Plant Cell, 1995,7(8):1307-1317.
doi: 10.1105/tpc.7.8.1307
[27] Lawit S J, Wych H M, Xu D P , et al. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant & Cell Physiology, 2010,51(11):1854-1868.
[28] Peng J, Richards D E, Hartley N M , et al. ‘Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999,400(6741):256-261.
doi: 10.1038/22307
[29] Gomi K, Sasaki A, Itoh H , et al. GID2,an F-box subunit of the SCF E3 complex,specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin. Plant Journal for Cell & Molecular Biology, 2004,37(4):626-634.
[30] Mussig C . Brassinosteroid‐promoted growth. Plant Biology, 2005,7(2):110-117.
doi: 10.1055/s-2005-837493
[31] Thomas H, Chuck G S, Shozo F , et al. Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(49):19814-19819.
doi: 10.1073/pnas.1108359108
[32] Multani D S, Briggs S P, Chamberlin M A , et al. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003,302(5642):81-84.
doi: 10.1126/science.1086072
[33] Fornalé S, Shi X H, Chai C L , et al. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. The Plant Journal, 2010,64(4):633-644.
doi: 10.1111/tpj.2010.64.issue-4
[34] Vignols F, Rigau J, Torres M A , et al. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell, 1995,7(4):407-416.
doi: 10.1105/tpc.7.4.407
[35] Johal G S, Multani D S, Briggs S P . Isolated nucleic acid molecules encoding the Br2 P-glycoprotein of maize and methods of modifying growth in plants transformed therewith:US,US7612256[P]. 2009-03.
[1] Chen Guangzhou, Wang Guangfu, Qu Jianzhou, Si Leiyong, . Study on Grain Dehydration Rate and#br# Correlation Analysis of Major Related#br# Characters in Different Maize Inbred Lines [J]. Crops, 2018, 34(5): 33-39.
[2] Su Guihua, Li Chunlei, Su Yichen. Evaluation of 22 Main Popularized Varieties#br# by Variety Regional Trails in Jilin Province [J]. Crops, 2018, 34(5): 63-70.
[3] Tang Liyuan, Li Xinghe, Zhang Sujun, Wang Haitao, . QTL Mapping for Photosynthesis#br# Related Traits in Upland Cotton [J]. Crops, 2018, 34(5): 85-90.
[4] Wu Ronghua, Zhuang Kezhang, Liu Peng, Zhang Chunyan. Response of Summer Maize Yield to#br# Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[5] Li Shaokun, Zhang Wanxu, Wang Keru, Han Dongsheng, . Study on Maize Mechanical Grain#br# Harvest in Northern Xinjiang [J]. Crops, 2018, 34(5): 127-131.
[6] Gao Wenjun, Yang Guoyi, Gao Xinzhong, Yu Zhu, . The Effects of Nitrogen, Phosphorus, or Potassium#br# Fertilizer on the Yield and Silage Quality of Maize [J]. Crops, 2018, 34(5): 144-149.
[7] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia [J]. Crops, 2018, 34(4): 149-153.
[8] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang [J]. Crops, 2018, 34(4): 62-68.
[9] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties [J]. Crops, 2018, 34(4): 79-83.
[10] Jingjing Yang,Jianglu Chen,Ruizhi Xie,Xiaowei Zhang,Bianhong Ding,Xinming Wu,Shaokun Li,Dongfang Li. Effects of Seed Weight Difference on the Evenness of Related Germination Indexes in Maize [J]. Crops, 2018, 34(3): 180-184.
[11] Shaokun Li,Keru Wang,Yanbo Wang,Haiyan Zhao,Yuzhong Shen,Dandan Cai,Wanxin Xiao,Wenye Jiang,Zhaofu Huang,Lichao Zhai,Ruizhi Xie,Peng Hou,Bo Ming. The Quality of Mechanical Harvesting Maize Grain and Its Influencing Factors in Central Liaoning Province [J]. Crops, 2018, 34(3): 162-167.
[12] Lei Shi,Guohong Wang,Yanbo Wang,Dawei Wang,Haiyan Zhao. Preliminary Study on Grain Dehydration Rate of Maize Hybrids and Their Parents [J]. Crops, 2018, 34(3): 84-89.
[13] Keru Wang,Shaokun Li,Yanbo Wang,Haiyan Zhao,Yuzhong Shen,Dandan Cai,Wanxin Xiao,Wenye Jiang,Zhaofu Huang,Lichao Zhai,Lulu Li,Ruizhi Xie,Peng Hou,Bo Ming. Screening Maize Varieties Suitable for Mechanical Harvesting Grain in the Central Liaoning Province [J]. Crops, 2018, 34(3): 97-102.
[14] Lulu Li,Ruizhi Xie,Keru Wang,Bo Ming,Peng Hou,Shaokun Li. Effects of Peeling Husk on Grain Dehydration of Maize [J]. Crops, 2018, 34(2): 114-117.
[15] Rui Li,Jianrong Bai,Xiuhong Wang,Congzhuo Zhang,Xiaomei Zhang,Lei Yan,Ruijuan Yang. Population Genetic Diversity of 144 Sweet Maizes [J]. Crops, 2018, 34(2): 17-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .