Crops ›› 2017, Vol. 33 ›› Issue (3): 19-24.doi: 10.16035/j.issn.1001-7283.2017.03.004

Previous Articles     Next Articles

Study of High Yield on Seed Production Mechanism in Northern Japonica Hybrid Rice of Stain Abortion Type

Wang Xianju1,2,Zhang Cheng1,Pang Xiu1,Chen Yajun1,Ding Fen1,Shao Guojun1,Xu Zhengjin2   

  1. 1 Liaoning Rice Research Institute,Shenyang 110161,Liaoning,China
    2 College of Agronomy,Shenyang Agricultural University,Shenyang 110161,Liaoning,China
  • Received:2017-02-25 Revised:2017-04-07 Online:2017-06-15 Published:2018-08-26
  • Contact: Guojun Shao,Zhengjin Xu

Abstract:

This paper studied the relationship among the key factors of seed production in northern japonica hybrid rice, including characteristics and differences by using 3 stain abortion japonica rice male sterile lines and 3 restorer lines through molecular assisted selection for mechanism comparison. Focuses were on the flowering time dynamics of sterile lines and restorer lines and stigma affinity, stigma exsertion rate, and glume open area of sterile lines and their differences. The results showed that the flower peak overlap time of sterile lines and restorer lines was decisive of the seed setting rate of sterile lines, sterile stigma affinity, stigma exsertion rate and the glume open area. Comparative studies were carried out on same row, different row seed setting rate and seed production yield of nine different combinations in the field. Results showed that the seed production mechanism was to coordinate the various factors in the parents. Therefore, we consider that the effect of the key factors on seed setting rate were as followings: flower peak overlap time of sterile lines and restorer lines>sterile stigma affinity>stigma exsertion rate>sterile glume open area. This research provides theoretical basis of sterile lines and restorer lines on high seed setting characteristics breeding for high yield seed production, for fundamentally solving the problem of lower seed production and for a steady development of japonica hybrid rice in north of China.

Key words: Japonica, Seed production mechanism, Flower time dynamics, Stigma affinity, Stigma exposure rate, Glume open area, Molecular assisted selection

Table 1

Test field seed production combinations"

亲本Parents C315 C586 C382
粳65A Jing 65A 粳65A/C315 粳65A/C586 粳65A/C382
粳14A Jing 14A 粳14A/C315 粳14A/C586 粳14A/C382
粳139A Jing 139A 粳139A/C315 粳139A/C586 粳139A/C382

Fig.1

Flower time dynamics of sterile lines and restorer lines"

Table 2

The comparison of sterile lines stigma affinity"

不育系/恢复系
Sterile line/
Restorer line
不育系与恢复系间隔1m
Sterile line and restorer
line interval 1m
不育系与恢复系间隔2m
Sterile line and restorer
line interval 2m
不育系与恢复系间隔3m
Sterile line and restorer
line interval 3m
不育系与恢复系间隔4m
Sterile line and restorer
line interval 4m
不育系与恢复系间隔5m
Sterile line and restorer
line interval 5m
花粉粒(个)
Pollen
grains
结实率(%)
Seed setting
rate
花粉粒(个)
Pollen
grains
结实率(%)
Seed setting
rate
花粉粒(个)
Pollen
grains
结实率(%)
Seed setting
rate
花粉粒(个)
Pollen
grains
结实率(%)
Seed setting
rate
花粉粒(个)
Pollen
grains
结实率(%)
Seed setting
rate
粳65A/C315
Jing 65A/C315
183.4C
63.8A
125.6C
52.1A
52.8C
36.2A
14.7C
11.8A
5.6C
2.4A
粳14A/C315
Jing 14A/C315
50.3B
37.6B
27.6B
6.0B
1.3B
粳139A/C315
Jing 139A/C315
39.4C
28.5C
15.3C
3.2C
0C
粳65A/C586
Jing 65A/C586
192.5B
72.4A
134.8B
61.5A
87.5B
48.4A
42.1B
34.2A
16.2B
10.5A
粳14A/C586
Jing 14A/C586
63.1B
55.1B
39.6B
28.9B
5.3B
粳139A/C586
Jing 139A/C586
48.2C
36.4C
30.7C
17.2C
1.1C
粳65A/C382
Jing 65A/C382
249.1A
82.6A
183.4A
76.3A
126.6A
59.2A
93.7A
50.3A
38.5A
25.3A
粳14A/C382
Jing 14A/C382
61.3B 59.4B 47.1B 34.1B 18.6B
粳139A/C382
Jing 139A/C382
52.4C 45.8C 38.7C 29.4C 8.1C

Table 3

The comparison results of sterile lines stigma exposure rate and seed setting rate"

不育系
Sterile lines
单边柱头外露率(%)
Unilateral stigma exposure rate
双边柱头外露率(%)
Bilateral stigma
exposure rate
结实率(%)
Seed setting rate
粳65A
Jing 65A
54.2A
12.6A
26.1A
粳14A
Jing 14A
32.4B
5.9B
13.6B
粳139A
Jing 139A
15.3C
0.8C
6.8C

Table 4

The comparison results of sterile lines glume open area"

不育系Sterile lines 粒型Grain type 张颖角度Glume open degree(°) 颖壳长Glume length (cm) 张颖面积Glume open area (cm2)
粳139A Jing 139A 圆粒Round shape 27.8c 0.668C 0.104C
粳14A Jing 14A 椭圆粒Oval shape 28.5b 0.752B 0.135B
粳65A Jing 65A 长粒Long shape 29.1a 0.814A 0.161A

Table 5

The comparison of average seed setting rate and yield in different lines of nine combinations seed production"

不育系/恢复系
Sterile line/Restorer line
第一行结实率(%)
Rate of seed setting
on the first line
第二行结实率(%)
Rate of seed setting
on the second line
第三行结实率(%)
Rate of seed setting
on the third line
小区产量(kg)
Yield
粳65A/C315 Jing 65A/C315 75.3B 58.3B 38.5B 9.1ABCDabcde
粳14A/C315 Jing 14A/C315 68.1D 41.8EFG 26.4EF 7.9CDEdef
粳139A/C315 Jing 139A/C315 54.6H 34.0H 19.2H 5.2FGgh
粳65A/C586 Jing 65A/C586 69.4CD 49.1C 32.9C 8.8ABCDEbcdef
粳14A/C586 Jing 14A/C586 64.2F 43.5DEF 28.7D 8.0BCDEcdef
粳139A/C586 Jing 139A/C586 57.3G 41.6FG 24.8F 7.1EFGf
粳65A/C382 Jing 65A/C382 82.4A 61.5A 43.7A 10.7Aa
粳14A/C382 Jing 14A/C382 64.3EF 40.2G 21.6G 7.8DEef
粳139A/C382 Jing 139A/C382 41.6I 30.4I 15.2I 4.9Gh

Table 6

The variance analysis of seed setting rate on different lines of nine combinations"

变异来源
Sources of variation
DF SS MS F Sig.
处理间Treatment 2 28 204.958 14 102.479 3 915.162** 0.000
品种间Varieties 8 40 250.190 5 031.274 1 396.794** 0.000
误差Error 216 778.036 3.602
总变异
Total variation
243 581 525.5
[1] 袁隆平 . 杂交水稻的育种战略设想. 杂交水稻, 1987,2(1):1-3.
[2] 马晓东 . 杂交稻种子生产技术.天津: 天津科学技术出版社, 1996: 5-8.
[3] 邹吉承, 郑君海, 王昌华 , 等. 北方杂交粳稻亲本选择的研究. 沈阳农业大学学报, 2003,34(5):376-380.
[4] 池田良一. 日本ハイブリッドライス育种研究. 农业技术, 1994,49(11):7-12.
[5] 杨建国 . 改变母本开花姿态提高异交结实率. 杂交水稻, 2000,15(2):15-16.
[6] 杨振玉 . 北方杂交粳稻育种研究.北京: 中国农业出版社, 1999: 21-27.
doi: 10.3969/j.issn.1000-1700.2012.06.004
[7] 张忠旭 . 北方杂交粳稻异交结实机制及高产制种技术研究. 沈阳:沈阳农业大学, 2009: 45-48.
[8] 田大成 . 杂交稻制种异交结实机制的研究. 杂交水稻, 1993,39(l):12-14.
[9] 马洪文 . 影响杂交水稻制种母本异交结实率因素的灰色关联分析.种子科技, 1996(3):29-30.
[10] 林建荣, 吴明国, 宋听蔚 . 三系粳稻不育系开花习性与异交结实率的关系. 杂交水稻, 2006,21(5):69-72.
[11] 徐云碧, 申宗坦, 杨再能 . 提高水稻异交率的研究(一)栽培稻柱头外露性变异的分析. 浙江大学学报, 1986,12(4):359-368.
[12] 邓应德, 贺立伟, 肖层林 , 等. 水稻花器性状和柱头外露特性及其相关性. 湖南农业大学学报(自然科学版), 2009,35(6):588-592.
[13] 田大成, 秦春林, 张素英 , 等. 母本柱头外露率与环境条件及与结实率关系的初步研究. 杂交水稻, 1990,5(3):17-20.
[14] 王晓敏, 李波, 徐小健 , 等. 影响杂交水稻制种母本异交结实率的因素. 作物研究, 2015,29(3):317-320.
[15] 张静, 陈国荣, 黄大军 , 等. 滇型杂交粳稻保持系与不育系柱头外露的遗传关系. 云南农业大学学报, 2005,20(4):459-461.
doi: 10.3969/j.issn.1004-390X.2005.04.002
[16] 李志刚, 贺良, 普自祥 , 等. 高原杂交粳稻滇杂35制种产量结构研究. 云南农业大学学报, 2009,24(6):783-787.
[17] 王先俱, 张城, 陈亚君 , 等. 优质高产杂交粳稻新组合粳优558的选育与应用. 杂交水稻, 2012,27(4):20-22.
doi: 10.3969/j.issn.1005-3956.2012.04.007
[1] Lili Zhang,Yizhou Zhao,Xin Li,Ting Mao,Yan Liu,Zhan Zhang,Shanjun Ni,Fucai Liu. Mutant Analysis on Quality Trait of Different Japonica Rice Progenies Induced by 60Co-γ Ray Irradiation [J]. Crops, 2018, 34(3): 51-56.
[2] Zhimin Du,Yuchen Yang,Yuanye Xia,Yanlong Gong,Zhiqiang Yan,Hai Xu. Effects of Harvest Time on Quality Traits of Hybrid Japonica Rice and Inbred Japonica Rice in Northern China [J]. Crops, 2018, 34(1): 147-151.
[3] Xijuan Zhang,Yongcai Lai,Ying Meng,Fengming Zhang,Ao Tang,Wenjun Dong,Chunxu Leng,Youhong Liu,Qi Wang. Effects of Planting Patterns on Growth, Yield and Temperature Utilization of Japonica Rice in Cold Region [J]. Crops, 2017, 33(5): 124-128.
[4] Haitao Cheng,Zhaohui Ma,Guilin Liu,Ping Cao,Wenyan Lü. Canonical Correlation Analysis between RVA Profile Characteristics and Quality Traits of Japonica Rice Varieties [J]. Crops, 2017, 33(2): 59-66.
[5] Yingjie Zheng,Guanghong Chen,Shaolin Wang,Ming Xia,Buchao Que,Yahui Yu,Ying Wang,Zhenyu Li. Multiplying Northern Japonica Dual-Purpose Genic Male Sterile Lines in Hainan Climate Conditions [J]. Crops, 2017, 33(1): 51-55.
[6] Ximing Xu,Xin Zhang,Lili Shi,Jing Cui,Deliang Ding,Hongyan Qu,Shouxian Gu,Yongjie Li. Evaluation of Rice Quality with Low Amylose Content in Hybrid Japonica Rice Combinations [J]. Crops, 2016, 32(6): 44-48.
[7] Liqiang Dong,Jing Ye,Shu Wang,Baoyan Jia,Yuancai Huang,Yan Wang. Effects of Sowing Rate on Yield and Photosynthetic Characteristics of Drill-Seeded Japonica Rice in North Cold Region [J]. Crops, 2016, 32(1): 86-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .