Crops ›› 2018, Vol. 34 ›› Issue (1): 56-61.doi: 10.16035/j.issn.1001-7283.2018.01.008

Previous Articles     Next Articles

Optimization of the Factors Related to the Efficiency of Agrobacterium-Mediated Transformation of Sorghum

Zhang Wei1,2,Wang Liangqun1,2,Liu Yong1,Hao Yanfang1,2,Yang Wei1,Bai Hongyan1,Wu Bo1   

  1. 1 Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Jinzhong 030600, Shanxi, China
    2 Sorghum Institute, Shanxi Academy of Agricultural Sciences, Jinzhong 030600, Shanxi, China
  • Received:2017-11-01 Revised:2017-11-29 Online:2018-02-20 Published:2018-08-24

Abstract:

Using sorghum variety RHMC and the agrobacterium strain EHA105 containing P CAMBIA3301 plasmid as the materials, we studied the factors which influence agrobacterium-mediated transformation efficiency of the sorghum so as to establish a stable transformation system. The results showed that when the explants were pre-cultured for 2d, the GUS staining was the best. When 200μmol/L acetosyringone was added to infecting fluid and co-culture media, the GUS staining was the best. The suitable concentration range of the OD600 was 0.8-1.0. The suitable time of the infection with agrobacterium was 5-10min. The suitable time of the co-culture was 2d. In this study, a stable transformation system was preliminary established. This provided some references for the transformation of sorghum in the future.

Key words: Sorghum, Agrobacterium, Genetic transformation, Callus

Fig.1

The structure of the PCAMBIA3301 plasmid"

Fig.2

The PCAMBIA3301 plasmid was leading in agrobacterium||| A, The agrobacterium strain EHA105 containing PCAMBIA3301 plasmid; B, PCR detection of colony"

Table 1

Effect of preculture time on transformation of the sorghum"

预培养天数(d)
Preculture time
供试愈伤组织数
Total number of callus
GUS基因表达的愈伤组织数
Number of callus with GUS expression
愈伤组织染色区
Callus staining region
抗性愈伤诱导率(%)
Ratio of resistant callus
0 50 0 0 0
1 50 0 0 0
2 50 1.27±0.25aA 约为1.2%,浅蓝色About 1.2%, light blue 2.54±0.56aA
3 50 1.03±0.48bB 约为1.0%,浅蓝色About 1.0%, light blue 2.06±0.71bB
4 50 0 0 0

Table 2

Effect of different AS concentration on transformation of the sorghum"

乙酰丁香酮的浓度(μmol/L)
AS concentration
供试愈伤组织数
Total number of callus
GUS基因表达的愈伤组织数
Number of callus with GUS expression
愈伤组织染色区
Callus staining region
抗性愈伤诱导率(%)
Ratio of resistant callus
0 50 0 0 0
100 50 1.33±0.34bB 约为0.8%,浅蓝色About 0.8%, light blue 2.66±0.33cC
200 50 1.65±0.15aA 约为2.6%,深蓝色About 2.6%, deep blue 3.30±0.52aA
300 50 1.52±0.86aA 约为2.5%,深蓝色About 2.5%, deep blue 3.04±0.64bB
400 50 1.14±1.25cC 约为2.1%,深蓝色About 2.1%, deep blue 2.28±0.23dD

Table 3

Effect of different infecting fluid concentration on transformation of the sorghum"

侵染液浓度
Infecting fluid concentration
供试愈伤组织数
Total number of callus
GUS基因表达的愈伤组织数
Number of callus with GUS expression
愈伤组织染色区
Callus staining region
抗性愈伤诱导率(%)
Ratio of resistant callus
0 50 0 0 0
0.2 50 0 0 0
0.4 50 0 0 0
0.6 50 1.14±0.15dD 约1.0%,浅蓝色About 1.0%, light blue 2.28±1.26dD
0.8 50 1.66±0.36bB 约2.3%,浅蓝色About 2.3%, light blue 3.32±0.58bB
1.0 50 1.85±0.43aA 约2.5%,浅蓝色About 2.5%, light blue 3.70±0.46aA
1.2 50 1.52±0.22cCB 约0.7%,深蓝色About 0.7%, deep blue 3.04±0.31cC

Table 4

Effect of different infection time on transformation of the sorghum"

侵染时间(min)
Infection time
供试愈伤组织数
Total number of callus
GUS基因表达的愈伤组织数
Number of callus with GUS expression
愈伤组织染色区
Callus staining region
抗性愈伤诱导率(%)
Ratio of resistant callus
0 50 0 0 0
5 50 1.57±0.84bBA 约2.5%,浅蓝色About 2.5%, light blue 3.14±0.22bBA
10 50 1.62±0.23aA 约2.5%,浅蓝色About 2.5%, light blue 3.24±0.51aA
15 50 1.59±0.15bBA 约2.6%,浅蓝色About 2.6%, light blue 3.18±0.64bBA

Table 5

Effect of different co-culture time on transformation of the sorghum"

共培养时间(d)
Co-culture time
供试愈伤组织数
Total number of callus
GUS基因表达的愈伤组织数
Number of callus with GUS expression
愈伤组织染色区
Callus staining region
抗性愈伤诱导率(%)
Ratio of resistant callus
0 50 0 0 0
1 50 0 0 0
2 50 1.65±0.72aA 约2.5%,浅蓝色About 2.5%, light blue 3.30±1.20aA
3 50 1.53±0.36aA 约2.7%,浅蓝色About 2.7%, light blue 3.06±0.33aA
4 50 0.48±0.15bB 约1.2%,浅蓝色About 1.2%, light blue 0.96±0.58bB
5 50 0 0 0
[1] Saballos A . Development and utilization of sorghum as a bioenergy. In:Vermerris W. Genetic Improvement of Bioenergy Crops. New York:Springer, 2008: 211-248.
[2] Liang G H, Gao Z S . Phylogenetic analysis and transformation of sorghum [Sorghum bicolor (L.) Moench]. Recent Research Developmental Biology, 2001,1:17-33.
[3] Anshu R, Robert G, Birch . Genetic transformation of sweet sorghum, Plant Cell Reports, 2010,29:997-1005.
doi: 10.1007/s00299-010-0885-x pmid: 20535472
[4] Rooney W L, Blumenthal J, Bean B , et al. Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioproducts and Bioproducts, 2007,1:147-157.
doi: 10.1002/bbb.15
[5] 张微, 王良群, 刘勇 , 等. 高粱遗传转化研究进展. 安徽农业科学, 2015,43(27):387-389.
[6] 魏开发, 刘逸萍, 林子英 , 等. 农杆菌介导单子叶植物遗传转化问题与对策. 植物学通报, 2008,25(4):491-496.
[7] 周逢勇, 王国英 . 玉米自交系P9-10遗传转化体系的建立. 科学通报, 1988(23):2517-2520.
[8] 黄璐, 卫志明 . 农杆菌介导的玉米遗传转化. 实验生物学报, 1999,32(4):381-387.
[9] 刘明志 . 论农杆菌介导的单子叶植物转化. 遗传, 1996(增刊):50-52.
[10] Suncan D R . The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta, 1985,165:322-332.
doi: 10.1007/BF00392228
[11] Zhu H, Muthukrishnan S, Krishnaveni S , et al. Biolistic transformation of sorghum using a rice chitinase gene. Journal of Genetics & Breeding, 1998,52:243-252.
[12] 朱莉, 郎志宏, 李桂英 , 等. 高粱遗传转化研究进展. 生物技术通报, 2011(1):1-7,113.
doi: 10.3724/SP.J.1259.2011.00216
[13] Lu L, Wu X R, Yin X Y , et al. Development of marker-free trans genic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with barasa selectable emarker. Plant Cell, Tissue and Organ Culture, 2009,99(1):97-108.
doi: 10.1007/s11240-009-9580-4
[14] 付超, 王婷婷, 银利辉 , 等. 农杆菌介导番茄遗传转化的相关因素优化. 分子植物育种, 2013,11(5):592-599.
doi: 10.3969/mpb.011.000592
[15] 林凤, 石太渊, 赵淑华 , 等. 根癌农杆菌介导的高粱遗传转化体系的研究. 生物技术, 2004,14(1):13-14.
doi: 10.3969/j.issn.1004-311X.2004.01.006
[16] 朱莉, 郎志宏, 李桂英 , 等. 农杆菌介导甜高粱转Btcry1Ah的研究. 中国农业科学, 2011,44(10):1989-1996.
doi: 10.3864/j.issn.0578-1752.2011.10.003
[17] 肖军, 石太渊, 王金艳 . 高粱遗传转化研究进展. 辽宁农业科学, 2003(5):38-40.
doi: 10.3969/j.issn.1002-1728.2003.05.014
[18] Zhao Z Y, Cai T, Taglini L , et al. Agrobacterium-mediated sorghum transformation. Plant Molecular Biology, 2000,44:789-798.
doi: 10.1023/A:1026507517182
[19] 肖军, 石太渊, 郑秀春 , 等. 根癌农杆菌介导的高粱遗传转化体系的建立. 杂粮作物, 2004,24(4):200-203.
doi: 10.3969/j.issn.2095-0896.2004.04.006
[20] 张明洲, 唐乔, 陈宗伦 , 等. 农杆菌介导Bt基因遗传转化高粱. 生物工程学报, 2009,25(3):418-423.
doi: 10.3321/j.issn:1000-3061.2009.03.016
[21] 张明洲, 陈宗伦, 方美明 , 等. 转基因高粱Cry1Ab蛋白含量的比较研究. 核农学报, 2009,23(3):391-394.
[22] 吴仙花 . 农杆菌介导甜高粱Bar基因再生体系建立及水稻EIS基因转化研究. 天津:天津农学院, 2014.
[1] Zhang Yizhong, Zhou Fuping, Zhang Xiaojuan, . Identification and Cluster Analysis of Photosynthetic#br# Characters and WUE in Sorghum Germplasm [J]. Crops, 2018, 34(5): 45-53.
[2] Zhang Ruidong, Cao Xiong, Yue Zhongxiao, . Effects of Nitrogen and Density Interaction on Grain#br# Yield and Nitrogen Use Efficiency of Sorghum [J]. Crops, 2018, 34(5): 110-115.
[3] Zhang Jianhua, Guo Ruifeng, Cao Changlin, Fan Na, . Study on Effect and Safety of Controlling Weed#br# in Sorghum Field by Several Stem and#br# Leaf Treatment Herbicide [J]. Crops, 2018, 34(5): 162-166.
[4] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum [J]. Crops, 2018, 34(4): 138-142.
[5] Jiao Zhang,Qi Wu,Yufei Zhou,Yitao Wang,Ruidong Zhang,Ruidong Huang. Effects of Drought and Rewatering at Seedling and Filling Stages on Photosynthetic Characteristics and Dry Matter Production of Sorghum [J]. Crops, 2018, 34(3): 148-154.
[6] Jianghui Cui,Fuzhu Cui,Jianfu Xue,Jianping Hao,Tianqing Du,Longxiang Sun. Effects of Fertilizer Reduction on Distribution and Stability of Soil Aggregates Based on Wheat-Sorghum System [J]. Crops, 2018, 34(1): 126-132.
[7] Yanfang Hao,Liangqun Wang,Yong Liu,Wei Zhang,Wei Yang,Hongyan Bai,Bo Wu. Establishment of Sorghum Cell Suspensions with Young Leaves [J]. Crops, 2018, 34(1): 35-40.
[8] Kai Zhu,Fei Zhang,Fulai Ke,Yanqiu Wang,Jianqiu Zou. Effects of Planting Density on Yield and Physiological Characteristics of Sorghum Hybrids Suitable for Mechenization [J]. Crops, 2018, 34(1): 83-87.
[9] Jie Gao,Qingfeng Li,Can Wang,Guobing Zhang,Qiu Peng. Effects of Differrent Nitrogen Level on Material Production and Nitrogen Use Characteristics in Glutinous Sorghum [J]. Crops, 2017, 33(6): 126-130.
[10] Cong Wang,Guangdong Yang,Zunyan Hu,Linqi Chen,Siqi Ren. Influence of Planting Densities on Canopy Structure and Light Radiation of Sorghum [J]. Crops, 2017, 33(5): 119-123.
[11] Chao Ding,Jianhua Zhang,Wenbin Bai,Ruifeng Guo,Changlin Cao. Effects of Commonly Used Herbicides on Physiological, Biochemical and Yield Quality of Sorghum [J]. Crops, 2017, 33(5): 149-155.
[12] Jizhen Yu,Rui Wang,Pengjie Zhan,Jun'ai Ping,Fuyao Zhang. Diversity of Agronomic and Quality Traits of Major Sorghum Hybrids in China [J]. Crops, 2017, 33(5): 49-54.
[13] Wei Zhang,Yang Zhang,Weijun Zhao,Rongfeng Shao,Huahu Bu,Yuhui Chang,Jinmei Li,Huayun Wang. Effects of Spraying Uniconazole on Agronomic Traits and Lodging Rate of Sweet Sorghum [J]. Crops, 2017, 33(4): 113-116.
[14] Xiaojuan Zhang,Fuping Zhou,Yizhong Zhang,Qiang Shao,Xinqi Fan,Yong Liu,Qingshan Liu. Study on Sterile Lines of Multiple Grain Sorghum [J]. Crops, 2017, 33(2): 72-75.
[15] Huan Wang,Bing Liu,Ziyu Bai,Junli Shi,Jinlin Ye. Effects of Laser Irradiation and Hybridization on the DNA Methylation Alteration in Sorghum (Sorghum bicolor L.) [J]. Crops, 2017, 33(1): 32-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .