Crops ›› 2020, Vol. 36 ›› Issue (1): 179-186.doi: 10.16035/j.issn.1001-7283.2020.01.029

Previous Articles     Next Articles

Response of Photosynthetic Characteristics and Canopy Micro-Environment to Planting Density and Row Spacing of Maize (Zea Mays L.)

Chen Zongpei,Xue Jiaxin,Li Ben,Wang Guiyan()   

  1. College of Agronomy/Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, China
  • Received:2019-08-16 Revised:2019-09-14 Online:2020-02-15 Published:2020-02-23
  • Contact: Guiyan Wang E-mail:wanggy@hebau.edu.cn

Abstract:

Reasonable density and rowing spacing allocation can build reasonable population structure of maize and improve photosynthetic efficiency. In order to provide scientific basis for high efficiency of radiation and temperature on production of maize in North China Plain, the response mechanism of the photosynthetic characteristics of the maize and the canopy microenvironment in response to to the density and row spacing was systematically analyzed. The experiment was designed to analyse two densities 67 500 plant/ha (D1), 82 500 plant/ha (D2) and three row spacing 60cm+60cm (H1), 80cm+40cm (H2), 38cm+38cm or 34.5cm+34.5cm (H3). The results showed that conventional planting density (D1H1) and high density planting (D2H2) have better canopy structure, suitable canopy temperature, CO2 concentration and relative humidity, these two planting manners could promote the utilization of light radiation and increase the photosynthetic rate, so they got higher yields. Therefore, on the basis of conventional planting density and equal row spacing, when the density is increased to 82 500 plant/ha wide and narrow row spacing has higher yield potential when the density is further increased.

Key words: Maize, Photosynthetic characteristics, Canopy microenvironment, Planting density, Row spacing, Response mechanism

Fig.1

Precipitation, average temperature, the highest temperature and the lowest temperature during growth stages of maize in 2018"

Fig.2

Dynamic changes of LAI in different treatments Average±standard error was used in the figure, different letters indicate significance at 0.05 level. The same below"

Fig.3

Dynamic changes of Pn in different treatments"

Fig.4

Dynamic changes of Gs in different treatments"

Fig.5

Dynamic changes of Tr in different treatments"

Fig.6

Canopy temperature change of different treatments"

Fig.7

Canopy CO2 concentration change of different treatments"

Fig.8

Dynamic changes of canopy relative humidity under different treatments"

Table 1

Correlation analysis between Pn and influence factor"

密度
Density
生育期
Growth stage
Gs Tr 冠层温度
Canopy temperature
冠层CO2浓度
Canopy CO2 concentration
冠层相对湿度
Canopy relative humidity
D1 大喇叭口期Bell 0.466** 0.643** -0.135 0.121 -0.003
抽雄期Tasseling 0.423* 0.391* -0.311 0.066 -0.146
灌浆期Filling 0.670** 0.638** -0.103 0.067 -0.225
成熟期Maturity 0.778** 0.820** -0.440* 0.268 -0.336*
D2 大喇叭口期Bell 0.694** 0.523* -0.663** 0.003 -0.429*
抽雄期Tasseling 0.876** 0.360* -0.512** 0.203 -0.323
灌浆期Filling 0.841** 0.491** -0.005 0.024 -0.248
成熟期Maturity 0.864** 0.876** -0.462** 0.101 -0.044

Table 2

The grain yield and yield components of different treatments"

处理
Treatment
穗数
Spike number
穗粒数
Grains number
百粒重(g)
100-kernel weight
理论产量(kg/hm2)
Theoretic yield
实际产量(kg/hm2)
Actual yield
D1H1 64 700.21b 576.33a 30.81a 11 355.05a 8 955.79a
D1H2 64 745.35b 521.37a 30.96a 10 329.42b 8 648.88b
D1H3 64 270.28b 536.00a 29.36a 9 996.58b 8 462.68b
D2H1 82 277.50a 508.50a 30.97a 12 806.60a 9 612.86a
D2H2 82 329.33a 532.67a 31.55a 13 675.17a 9 754.04a
D2H3 82 242.67a 453.33b 30.54a 11 253.85a 9 330.75a
[1] 曹凯云, 张肖肖 . 河北“粮改饲”试点县泌乳牛需全部饲用全株青贮玉米——河北省首届“粮改饲”促进草牧业发展峰会在石家庄举行. 北方牧业,2016(18):4.
[2] 于吉琳 . 从田间结构配置角度谈玉米的光能高效利用. 农民致富之友,2018(8):40.
[3] 王富贵, 于晓芳, 高聚林 , 等. 不同类型玉米品种冠层结构及其光合特性对深松增密的响应. 西北农林科技大学学报(自然科学版), 2019,47(2):33-44.
[4] 李广浩, 刘娟, 董树亭 , 等. 密植与氮肥用量对不同耐密型夏玉米品种产量及氮素利用效率的影响. 中国农业科学, 2017,50(12):2247-2258.
[5] 张敬宇, 付健, 杨克军 , 等. 不同种植方式和密度对玉米产量及光合特性的影响. 安徽农业科学, 2015,43(23):29-32,93.
[6] 王波, 余海兵, 支银娟 . 玉米不同种植模式对田间小气候和产量的影响. 核农学报, 2012,26(3):623-627.
[7] 范龙秋 . 密度与行距配置对耐密型春玉米品种农艺性状、产量及品质的影响. 晋中:山西农业大学, 2014.
[8] 马步益 . 宽窄行配置方式对玉米抗倒伏能力及产量的影响. 石河子:石河子大学, 2017.
[9] 吕丽华, 赵明, 赵久然 , 等. 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学,2008(9):2624-2632.
[10] 魏珊珊, 王祥宇, 董树亭 . 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014,25(2):441-450.
[11] 王洋, 齐晓宁, 刘胜群 , 等. 宽窄行种植方式对生育后期玉米叶片衰老的影响. 土壤与作物, 2016,5(4):211-214.
[12] 王敬亚, 齐华, 梁熠 , 等. 种植方式对春玉米光合特性、干物质积累及产量的影响. 玉米科学, 2009,17(5):113-115,120.
[13] 田畅, 王洋 . 行向和种植方式对成熟期玉米叶片衰老生理特性的影响. 华北农学报, 2018,33(S1):111-116.
[14] 刘铁东, 宋凤斌 . 宽窄行种植方式对玉米光截获和辐射利用效率的影响. 华北农学报, 2011,26(6):118-123.
[15] 余利, 刘正, 王波 , 等. 行距和行向对不同密度玉米群体田间小气候和产量的影响. 中国生态农业学报, 2013,21(8):938-942.
[16] 王萌, 陈国强, 金海燕 , 等. 密度和空间布局种植方式对夏玉米穗位叶光合生理性状的影响. 华北农学报, 2016,31(2):131-138.
[17] 许大全 . 光合作用效率. 植物生理学通讯,1998(5):1-7.
[18] 庄富娟 . 浅析气象因子对玉米生长发育的影响. 种子科技, 2018,36(8):17.
[19] 时亚斌 . 谈二氧化碳对植物生长的影响. 林业勘查设计,2016(2):71-72.
[20] 孙英杰 . 气象条件对玉米光合特性及产量的影响研究. 沈阳:沈阳农业大学, 2017.
[21] 王增丽, 栾元利, 温广贵 , 等. 不同灌溉方式下制种玉米叶面积指数、干物质累积与产量研究. 干旱地区农业研究, 2017,35(6):27-31.
[22] 刘永忠, 李万星, 曹晋军 , 等. 高密度条件下行距配置对春玉米光合特性及产量的影响. 华北农学报, 2017,32(3):111-117.
[23] Sun J Y, Gao J L, Wang Z G , et al. Maize canopy photosynthetic efficiency,plant growth,and yield responses to tillage depth. Agronomy, 2019,9(3):1-18.
[24] 齐延芳, 许方佐, 周柱华 , 等. 种植密度对玉米鲁原单22光合作用的影响. 核农学报, 2004,18(1):14-17.
[25] 薛吉全, 梁宗锁, 马国胜 , 等. 玉米不同株型耐密性的群体生理指标研究. 应用生态学报,2002(1):55-59.
[26] 张邦琨, 张璐, 陈芳 , 等. 不同生态条件对玉米田间小气候和产量的影响. 中国农业气象,1999(3):34-38.
[27] 王长进, 胡曼, 李静 , 等. 行株距配置对夏玉米产量及田间小气候的影响. 安徽科技学院学报, 2014,28(3):21-24.
[28] 梁熠, 齐华, 王敬亚 , 等. 宽窄行栽培对玉米生长发育及产量的影响. 玉米科学, 2009,17(4):97-100.
[1] Hua Yan,Zhongwen Yan,Jie Lei. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[2] Hongtao Shen,Fusheng Zhang,Dong Li,Jianhua Qiu,Xinghong Cai,Yubao Qin. Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang [J]. Crops, 2020, 36(2): 105-111.
[3] Ruijie Li,Huihui Tang,Qingyan Wang,Yanli Xu,Mengying Fang,Peng Yan,Zhiqiang Dong,Fenglu Zhang. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[4] Wei Zhou,Fuzhu Cui,Hongkai Duan,Guohua Hao,Hui Yang,Ruirui Liu. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[5] Xiaoyi Wei,Jiamu Wang,Yi Ma,Junfeng Ma,Defeng Hong,Feng Wei. Identification and Principal Component Analysis of Maize Combinations Suitable for Mechanical Grain Harvesting [J]. Crops, 2020, 36(2): 48-53.
[6] Ruidong Sun,Zhenyuan Zang,Jiabin Ci,Wei Yang,Xuejiao Ren,Liangyu Jiang,Weiguang Yang. Identification of Resistance and Analysis of Resistance Source for Exserohilum turcicum in Maize Inbred Lines [J]. Crops, 2020, 36(2): 65-70.
[7] Zhichang Yang,Tao Shen,Zhuo Luo,Zhi Peng,Yuqian Hu,Tao Zi,Tinghao Xiong,Haixing Song. Effects of Low Nitrogen Rate Combined with High Planting Density on Yield Formation and Nitrogen Use Efficiency of Machine-Transplanted Double Cropping Rice [J]. Crops, 2020, 36(2): 71-81.
[8] Li Zhongnan,Zhang Xiaohui,Wang Yueren,Zhang Yanhui,Wu Shenghui,Xu Zhengxue,Li Guangfa. Inheritance of Seed Dormancy in F1 of DH Lines of Maize [J]. Crops, 2020, 36(1): 194-198.
[9] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1 [J]. Crops, 2020, 36(1): 22-28.
[10] Demuqige,Liu Zhiping,Wang Lei,Wang Jinbo,Qi Haixiang,Xu Shoujun. Effect of Nitrogen Fertilizer on Photosynthetic Characteristics of Barley during Grain Filling Stage and Its Correlation Analysis [J]. Crops, 2020, 36(1): 103-109.
[11] Xu Hanlin,Liu Yao,Yuan Xiaofeng,Pan Jie,Weng Qiaoyun,Lü Aizhi,Liu Yinghui. Projection of Climate Change on the Planting Distribution of Silage Maize in Northwest Hebei Province [J]. Crops, 2020, 36(1): 124-129.
[12] Zhang Yongqiang,Qi Xiaoxiao,Zhang Lu,Dong Huiyun,Chen Chuanxin, Sailihan·Sai,Xue Lihua,Chen Xingwu,Lei Junjie. Effects of Nitrogen Management on Leaf Photosynthetic Characteristics and Yield of Winter Wheat under Drip Irrigation [J]. Crops, 2020, 36(1): 141-145.
[13] Si Leiyong,Xia Zhenqing,Jin Yan,Chen Guangzhou,Wang Guangfu,Lu Haidong,Xue Jiquan. Impacts of Different Mulching Patterns on Root-Shoot Growth of Spring Maize and Water Use Efficiency in Dry Land [J]. Crops, 2020, 36(1): 146-153.
[14] Bai Lanfang,Zhang Xiangqian,Wang Rui,Wang Ya'nan,Ye Xuesong,Wang Yufen,Li Juan,Zhang Dejian. Study on Photosynthetic Characteristics, Yield and Quality of Different Maize Varieties [J]. Crops, 2020, 36(1): 154-160.
[15] Tan Youbin. Suggestion and Discussion of Maize Breeding in West Africa Assistance Agricultural Project [J]. Crops, 2020, 36(1): 9-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hongqu Liao,Hongli Chen,Wensi Fan,Yu Chen,Qiujing Han,Jianjun Yu,Ming Ma. Fractal Characteristics of Soil Particles and Their Effects on Physicochemical Properties of Tobacco Leaves in Main Tobacco Growing Areas in Henan[J]. Crops, 2018, 34(1): 118 -125 .
[2] . [J]. Crops, 2012, 28(4): 16 -19 .
[3] . [J]. Crops, 1996, 12(5): 11 .
[4] . [J]. Crops, 1990, 6(1): 34 .
[5] . [J]. Crops, 1990, 6(2): 11 -12 .
[6] . [J]. Crops, 1992, 8(2): 28 .
[7] . [J]. Crops, 1992, 8(2): 12 .
[8] . [J]. Crops, 1994, 10(1): 39 -40 .
[9] . [J]. Crops, 1994, 10(4): 2 .
[10] . [J]. Crops, 1994, 10(3): 23 -25 .