Crops ›› 2020, Vol. 36 ›› Issue (1): 187-193.doi: 10.16035/j.issn.1001-7283.2020.01.030

Previous Articles     Next Articles

Identification of Genes Associated with Rust Resistance and Fusarium Head Blight Resistance in Yunnan Wheat Cultivars (Lines) by KASP Assays

Wang Zhiwei,Wang Zhilong,Qiao Xiangmei,Yang Jinhua,Cheng Jiasheng,Cheng Geng,Yu Yaxiong()   

  1. Food Crops Research Institute, Yunnan Academy of Agricultural Sciences/National Wheat Improvement Center Yunnan Branch, Kunming 650200, Yunnan, China
  • Received:2019-07-19 Revised:2019-10-16 Online:2020-02-15 Published:2020-02-23
  • Contact: Yaxiong Yu E-mail:yyx582@163.com

Abstract:

In order to provide resources for genetic improvement of wheat disease resistance in Yunnan Province by selecting valuable germplasm having disease-resistant genes using KASP assays Sr2_ger93p, Lr34jagger, CSTM4_67G, Lr68 2, VPM_SNP and TaHRC KASP which associated with 5 rust adult-plant resistance genes and Fusarium head blight resistance gene Fhb1, 42 Yunnan improved wheat cultivars (lines) were screened. The results showed that four cultivars carried pleiotropic rust resistance gene Lr34/Yr18/Sr57, with a frequency of 9.52%. Six cultivars (lines) carried pleiotropic rust resistance gene Lr67/Yr46/Sr55, with a frequency of 14.29%. Seven cultivars carried the slow-rusting gene Lr68, with a frequency of 16.67%. Olny one cultivars carried pleiotropic rust resistance gene Sr2/Yr30 or rust adult-plant resistance gene Lr37, with a frequency of 2.38%, respectively. Fusarium head blight resistance gene Fhb1 was not found in 42 tested wheat cultivars (lines). Yunmai 69, Yunmai 75, Yunmai 56, Yimai 1, and Yimai 3 carried two adult-plant resistance genes which could be used as resistant materials for genetic improvement of durable rust resistance in Yunnan Province.

Key words: Wheat, Gene, Rust adult-plant resistance, Fusarium head blight resistance, KASP assay

Table 1

Leading wheat cultivars (lines) tested, year of release, and pedigree"

品种(系)
Cultivar (Line)
育成年份
Year of release
系谱
Pedigree
云麦39 Yunmai39 1996 云麦29/Flicker
云麦42 Yunmai42 1999 抗锈782/云麦29//YR70-PAM
云麦49 Yunmai49 2006 953-3317/3317
云麦51 Yunmai51 2007 91B-831/92B-84
云麦52 Yunmai52 2007 92R149/963-11185
云麦53 Yunmai53 2007 96B-254/96B-6
云麦54 Yunmai54 2009 云麦39/S-792
云麦56 Yunmai56 2008 932-625/822-16-7-3
云麦57 Yunmai57 2008 PFAU/MLAIV
云麦59 Yunmai59 2012 9213-194×9213-4074
云麦62 Yunmai62 2012 NG8319/2/SHA4/LTRA/3/902-41
云麦64 Yunmai64 2012 云麦39/云麦42
云麦68 Yunmai68 2014 932-625/822-16-7-3
云麦69 Yunmai69 2014 云麦42/陕623
云麦72 Yunmai72 2017 云麦39/943-676
云麦73 Yunmai73 2017 98D4-12/川麦24//957-835
云麦74 Yunmai74 2018 云麦50/云麦39
云麦75 Yunmai75 2018 R7/光头麦
云麦76 Yunmai76 2019 云麦50/云麦39
云麦77 Yunmai77 2019 98D4-12/云麦42
云麦78 Yunmai78 2019 云麦39/943-676
宜麦1号 Yimai1 2007 92-01/87-19
宜麦2号 Yimai2 2011 川麦24/96-16
宜麦3号 Yimai3 2011 96-23/96-14
靖麦12 Jingmai12 2006 7901/792364//9118
靖麦14 Jingmai14 2009 苏麦3号/庆30//8619-10
凤麦32号 Fengmai32 2002 817M-6-2-2/882-182
凤麦34号 Fengmai34 2005 9034M3-2-2/YV91-1167
凤麦35号 Fengmai35 2006 凤麦24//806-14-2-15/85-7421
凤麦36号 Fengmai36 2006 凤麦31分离单株系选而成
凤麦38号 Fengmai38 2008 91E001/8941
楚麦16号 Chumai16 2018 内麦8号/间3//重组104
云154-65 Yun154-65 2015
文D6-8 WenD6-8 2015
弥12V4-15 Mi12V4-15 2013
云122-329 Yun122-329 2013
云6-14 Yun6-14 2013
云124-6 Yun124-6 2013
云16D4-13 Yun16D4-13 2016
云16D4-12 Yun16D4-12 2016
云15D4-15 Yun15D4-15 2015
保小麦2号 Baoxiaomai2 2015

Table 2

KASP assays of genes associated with rust resistance and fusarium head blight resistance"

Table 3

Genotypes of the KASP assays for rust resistance and fusarium head blight resistance in 42 Yunnan wheat cultivars (lines)"

品种(系) Cultivar (Line) Lr34 Lr67 Lr68 Lr37 Sr2 Fhb1
云麦39 Yunmai39 Lr34+ Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦42 Yunmai42 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦49 Yunmai49 Lr34- Lr67- Lr68+ Lr37- N Fhb1-
云麦51 Yunmai51 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦52 Yunmai52 Lr34- Lr67- Lr68+ Lr37- Sr2- Fhb1-
云麦53 Yunmai53 N Lr67- Lr68- Lr37- N Fhb1-
云麦54 Yunmai54 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦56 Yunmai56 Lr34- Lr67- Lr68+ Lr37+ Sr2- Fhb1-
云麦57 Yunmai57 Lr34- Lr67- Lr68+ Lr37- Sr2- Fhb1-
云麦59 Yunmai59 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦62 Yunmai62 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦64 Yunmai64 Lr34- Lr67- Lr68- Lr37- N Fhb1-
云麦68 Yunmai68 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦69 Yunmai69 Lr34+ Lr67- Lr68+ Lr37- Sr2- Fhb1-
云麦72 Yunmai72 Lr34+ Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦73 Yunmai73 Lr34- Lr67- Lr68- Lr37- N Fhb1-
云麦74 Yunmai74 Lr34+ Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦75 Yunmai75 Lr34- Lr67+ Lr68- Lr37- Sr2 (Hope) Fhb1-
云麦76 Yunmai76 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦77 Yunmai77 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦78 Yunmai78 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云154-65 Yun154-65 Lr34- Lr67- Lr68- Lr37- N Fhb1-
文D6-8 WenD6-8 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
弥12V4-15 Mi12V4-15 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云122-329 Yun122-329 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云6-14 Yun6-14 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云124-6 Yun124-6 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云16D4-13 Yun16D4-13 Lr34- Lr67- Lr68- Lr37- N Fhb1-
云16D4-12 Yun16D4-12 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云15D4-15 Yun15D4-15 Lr34- Lr67+ Lr68- Lr37- N Fhb1-
宜麦1号 Yimai1 Lr34- Lr67+ Lr68+ Lr37- N Fhb1-
宜麦2号 Yimai2 Lr34- Lr67- Lr68- Lr37- N Fhb1-
宜麦3号 Yimai3 Lr34- Lr67+ Lr68+ Lr37- Sr2- Fhb1-
靖麦12 Jingmai12 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
靖麦14 Jingmai14 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
凤麦32号 Fengmai32 Lr34- Lr67+ Lr68- Lr37- Sr2- Fhb1-
凤麦34号 Fengmai34 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
凤麦35号 Fengmai35 Lr34- Lr67+ Lr68- Lr37- Sr2- Fhb1-
凤麦36号 Fengmai36 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
凤麦38号 Fengmai38 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
楚麦16号 Chumai16 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
保小麦2号 Baoxiaomai2 Lr34- Lr67- Lr68- Lr37- N Fhb1-

Fig.1

Frequency of genes associated with rust resistance and fusarium head blight resistance in 42 wheat cultivars (lines)"

[1] 李振歧, 曾士迈 . 中国小麦锈病. 北京: 中国农业出版社, 2002: 2-3.
[2] 程顺和, 张勇, 别同德 , 等. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012,28(5):938-942.
[3] Wellings C R, McIntosh R A, Hussain M . A new source of resistance to Puccinia striiformis f. sp. tritici in spring wheats (Triticum aestivum). Plant Breeding, 1988,100(2):88-96.
[4] Conner R L, Kuzyk A D, Su H . Impact of powdery mildew on the yield of soft white spring wheat cultivars. Canadian Journal of Plant Science, 2003,83(4):725-728.
[5] 何中虎, 兰彩霞, 陈新民 , 等. 小麦条锈病和白粉病成株抗性研究进展和展望. 中国农业科学, 2011,44(11):2193-2215.
[6] 金艳, 刘付锁, 朱统泉 , 等. 河南省小麦赤霉病的发生情况分析与防治对策. 河南科技学院学报, 2016,44(6):1-4.
[7] Chen X M, Line R f . Gene action in wheat cultivars for durable,high-temperature,adult-plant resistance and interactions with race-specific,seedling resistance to stripe rust caused by Puccinia striiformis. Phytopathology, 1995,85(5):567-572.
[8] Gustafson G D, Shaner G . Influence of plant age on the expression of slow-mildewing resistance in wheat (Triticum aestivum). Phytopathology, 1982,72:746-749.
[9] 陈时盛 . 小麦抗锈病基因的遗传分析及其分子作图. 成都:四川农业大学, 2015.
[10] 金夏红, 冯国华, 刘东涛 , 等. 小麦抗叶锈病遗传研究进展. 麦类作物学报, 2017,37(4):504-512.
[11] Li Z F, Lan C X, He Z H , et al. Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Science, 2014,54(5):1907-1925.
[12] Crossa J, Burgueno, Dreisigacker S , et al. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 2007,177(3):1889-1913.
[13] Spielmeyer W, McIntosh R A, Kolmer J ,et al. Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theoretical and Applied Genetics, 2005,111(4):731-735.
[14] William M, Singh R P, Huerta-Espino J , et al. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology, 2003,93(2):153-159.
[15] Herrera-Foessel S A, Lagudah E S, Huerta-Espino J , et al. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theoretical and Applied Genetics, 2011,122(1):239-249.
[16] Herrera-Foessel S A, Singh R P, Huerta-Espino J , et al. Lr68:A new gene conferring slow rusting resistance to leaf rust in wheat. Theoretical and Applied Genetics, 2012,124(8):1475-1486.
[17] Bariana H S, McIntosh R A . Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromsome 2A. Genome, 1993,36:476-482.
[18] Xue S L, Kolmer J A, Wang S W , et al. Mapping of Leaf rust resistance genes and molecular characterization of the 2NS/2AS translocation in the wheat cultivar Jagger. G3:Genes,Genomes, Genetics, 2018,8(6):2059-2065.
[19] 张爱民, 阳文龙, 李欣 , 等. 小麦抗赤霉病研究现状与展望. 遗传, 2018,40(10):858-873.
[20] 刘易科, 佟汉文, 朱展望 , 等. 小麦赤霉病抗性改良研究进展. 麦类作物学报, 2016,36(1):51-57.
[21] Xie G Q, Zhang M C, Chakraborty S , et al. The effect of 3BS locus of Sumai 3 on Fusarium head blight resistance in Australian wheats. Australian Journal of Experimental Agriculture, 2007,47(5):603-607.
[22] Bernardo A, Bai G H, Yu J B , et al. Registration of near-isogenic winter wheat germplasm contrasting in Fhb1 for Fusarium head blight resistance. Journal of Plant Registrations, 2013,8(1):106-108.
[23] Randhawa H S, Asif M, Pozniak C , et al. Application of molecular markers to wheat breeding in Canada. Plant Breeding, 2013,132(5):458-471.
[24] Semagn K, Babu R, Hearne S , et al. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP):overview of the technology and its application in crop improvement. Molecular Breeding, 2014,33(1):1-14.
[25] Rasheed A, Wen W E, Gao F M , et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016,129(10):1843-1860.
[26] Khalid M, Afzal F, Gul A , et al. Molecular characterization of 87 functional genes in wheat diversity panel and their association with phenotypes under well-watered and water-limited conditions. Frontiers in Plant Science, 2019,10:717-732.
[27] Su Z Q, Jin S J, Zhang D D , et al. Development and validation of diagnostic markers for Fhb1 region,a major QTL for Fusarium head blight resistance in wheat. Theoretical and Applied Genetics, 2018,131(11):2371-2380.
[28] Rogers S O, Bendich A J . Extraction of DNA from milligram amounts of fresh,herbarium and mummified plant tissues. Plant Molecular Biology, 1985,5(2):69-76.
[29] Rasheed A, Jin H, Xiao Y G , et al. Allelic effects and variations for key bread-making quality genes in bread wheat using high-throughput molecular markers. Journal of Cereal Science, 2019,85:305-309.
[30] 邹景伟, 贾万利, 李立鑫 , 等. 120份小麦品种(系)重要性状功能基因的KASP标记检测. 分子植物育种, 2019,17(12):3945-3959.
[31] 张维军, 赵俊杰, 何进尚 , 等. 宁夏小麦种质资源穗发芽抗性鉴定及相关分子标记的有效性评价. 麦类作物学报, 2019,39(5):532-539.
[32] 杨子博, 顾正中, 周羊梅 , 等. 江苏淮北地区小麦品种资源籽粒硬度基因等位变异的KASP检测. 麦类作物学报, 2017,37(2):153-161.
[33] 张宏军, 宿振起, 柏贵华 , 等. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018,44(4):505-511.
[34] Moore J W, Herrera-Foessel S, Lan C X , et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 2015,47(12):1494-1498.
[1] Xunchao Zhao,Jingyu Xu,Shengnan Gai,Yulei Wei,Xiaoxuan Xu,Dong Ding,Meng Liu,Jinjie Zhang,Wenjing Shao. Identification of Stearyl -ACP Desaturase Gene (SbSAD) Family and Their Expression Analysis at Different Developmental Stages in Sorghum [J]. Crops, 2020, 36(2): 20-27.
[2] Hezheng Wang,Sihan Shen,Dongxia Zhang,Gaijing Wang,Jinzhi Zheng,Biao Bi,Wenjie Wang. Effects of Salicylic Acid on Physiological and Biochemical Characteristics of Wheat Seedling under Water Stress [J]. Crops, 2020, 36(2): 168-171.
[3] Xiaoyu Zhang,Yaling Zhang,Xuehui Jin,Tianyu Yan,Ze Zhao. Genetic Analysis of Pathogenicity of Sexual Progeny of Magnaporthe oryzae [J]. Crops, 2020, 36(2): 182-187.
[4] Mengli Ma,Tiantao Wang,En Lei,Hengling Meng,Wei Zhang,Tingting Zhang,Bingyue Lu. Genetic Diversity Analysis of Amomum tsao-ko in Jinping Based on Phenotypic Traits and SSR Markers [J]. Crops, 2020, 36(2): 54-59.
[5] Tianxin Chen,Yanjie Wang,Yan Zhang,Xuhong Chang,Zhiqiang Tao,Demei Wang,Yushuang Yang,Yingjie Zhu,Akang Liu,Shubing Shi,Guangcai Zhao. Effects of Different Nitrogen Rates on Photosyntheticand Physiological Indexes and Yield of Winter Wheat [J]. Crops, 2020, 36(2): 88-96.
[6] Bo Zhang,Tiantian Gao,Hongbo Cheng,Rui Li,Yuwei Chai,Yawei Li,Shouxi Chai. Effects of Mulching on Water Content of Plant and Flag Leaves and Grain Yield of Winter Wheat in Dryland [J]. Crops, 2020, 36(2): 97-104.
[7] Chengrui Ma,Dabing Xiang,Yan Wan,Jianyong Ouyang,Yue Song,Zhengsong Tang,Jianying Liu,Gang Zhao. Difference Analysis of Spatial Distribution Characteristics of Different Tartary Buckwheat Varieties [J]. Crops, 2020, 36(1): 35-40.
[8] Tian Mengxiang,Gong Yanlong,Zhang Shilong,He Youxun,Lei Yue,Yu Benxun,Yu Li,Li Jiali,Zhang Dashuang,Ye Yongyin. Design and Verification of New Functional Marker of Chilling-Tolerance COLD1 Gene in Rice Seedling Stage [J]. Crops, 2020, 36(1): 55-60.
[9] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice [J]. Crops, 2020, 36(1): 1-8.
[10] Huang Yinling,Lei Zhongshun,Zheng Tao,Suo Xinxia. Effects of Different Nitrogen Concentrations on Yield and Benefit of Winter Wheat and Soil Physical and Chemical Properties [J]. Crops, 2020, 36(1): 130-135.
[11] Zhang Yongqiang,Qi Xiaoxiao,Zhang Lu,Dong Huiyun,Chen Chuanxin, Sailihan·Sai,Xue Lihua,Chen Xingwu,Lei Junjie. Effects of Nitrogen Management on Leaf Photosynthetic Characteristics and Yield of Winter Wheat under Drip Irrigation [J]. Crops, 2020, 36(1): 141-145.
[12] Yang Wenbiao,Zhang Huiyu,Li Ying,Qi Zewei,Liu Kaikai,Gao Zhiqiang,Sun Min,Xue Jianfu. Spatiotemporal Distribution of Potential Productivity of Winter Wheat and Meteorological Factor Analysis in Shanxi Province [J]. Crops, 2020, 36(1): 161-167.
[13] Gu Kejun,Gu Dongxiang,Zhang Simei,Zhang Chuanhui,Zhang Henggan,Wu Jingjing,Fan Pingsheng. Short-Term Effects of Tillage and Organic Fertilizer Application on Soil Characters and Annual Rice-Wheat Yield in Coastal Low- and Medium-Yield Farmland of the Old Yellow River [J]. Crops, 2020, 36(1): 76-80.
[14] Song Jian,Cao Xiaoning,Wang Haigang,Chen Ling,Wang Junjie,Liu Sichen,Qiao Zhijun. Identification and Expression Analysis of ASR Family Genes in Setaria italica [J]. Crops, 2019, 35(6): 33-42.
[15] Yang Tian,Zhang Yongqing,Dong Fuhui,Ma Xingxing,Xue Xiaojiao. Research on the Root Growth of Different Drought-Resistant Fagopyrum tataricum under Different Water Conditions [J]. Crops, 2019, 35(6): 76-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[3] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress[J]. Crops, 2018, 34(4): 48 -52 .
[4] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang[J]. Crops, 2018, 34(4): 62 -68 .
[5] Liangmei Chen,Jiangxia Li,Zhaoyun Hu,Wenling Ye,Wenge Wu,Youhua Ma. Review on Application of Low Accumulation Crops on Remediation of Farmland Contaminated by Heavy Metals[J]. Crops, 2018, 34(1): 16 -24 .
[6] Lu Zhao,Zhiwei Yang,Liqun Bu,Ling Tian,Mei Su,Lei Tian,Yinxia Zhang,Shuqin Yang,Peifu Li. Analysis and Comprehensive Evalution of Phenotypic Genetic Diversity of Ningxia and Xinjiang Rice Germplasm[J]. Crops, 2018, 34(1): 25 -34 .
[7] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines)[J]. Crops, 2018, 34(1): 77 -82 .
[8] . [J]. Crops, 2012, 28(2): 10 -15 .
[9] . [J]. Crops, 1995, 11(3): 23 -25 .
[10] . [J]. Crops, 1990, 6(2): 9 -10 .