Crops ›› 2020, Vol. 36 ›› Issue (1): 81-88.doi: 10.16035/j.issn.1001-7283.2020.01.014

Previous Articles     Next Articles

Effects of Sowing in Line under Water on Agronomic Characters and Yield Components of Rice in Cold Region

Wang Heying1,Guo Xiaohong1(),Zhang Qinming2,Ma Yan2,Li Meng3,Jiang Hongfang1,Hu Yue1,Lan Yuchen1,Xu Lingqi1,Guo Hongtao1,Lü Yandong1   

  1. 1College of Agronmy, Heilongjiang Bayi Agricultural University/Key Laboratory of Modern Agricultural Cultivation Technology and Crop Germplasm Improvement in Heilongjiang Province, Daqing 163319, Heilongjiang, China
    2Agricultural Bureau of Chengwu County of Shandong Province, Heze 274200, Shandong, China
    3Agricultural Technology Extension Station of Mudanjiang, Mudanjiang 157000, Heilongjiang, China
  • Received:2019-05-08 Revised:2019-09-29 Online:2020-02-15 Published:2020-02-23
  • Contact: Xiaohong Guo E-mail:guoxh1980@163.com

Abstract:

In recent years, with the shortage of labor, the advantages of saving labor of direct seeding rice have gradually received attention, so it is extremely important to choose rice varieties suitable for sowing in line under water (direct seeding). To this end, using 29 rice varieties from cold region as materials, the effects of sowing in line under water on agronomic traits, yield components and yield of rice in cold region were studied by randomized block design. The effects of sowing in line under water on panicle number per unit area of rice in cold region was positive, the effects on plant height, panicle length, panicle weight, number of primary branches, number of secondary branches, number of grains per panicle, grain formation rate, 1000-grain weight, biological yield, economic coefficient and theoretical yield were negative. Sowing in line under water increased the variability of panicle weight, primary branch number, secondary branch number, panicle number per unit area, grain number per panicle, grain formation rate, 1000-grain weight, biological yield, economic coefficient and theoretical yield, while the variation coefficient of 1000-grain weight was smaller, and it response to sowing in line under water was slow. The response of panicle weight, grain formation rate and biomass to sowing in line under water was more sensitive, and the response of theoretical yield to sowing in line under water was also more sensitive.

Key words: Rice, Sowing in line under water, Cold region, Agronomic traits, Yield

Table 1

Experiment materials and number"

编号Number 品种Variety 编号Number 品种Variety
T01 绥粳4号 T16 垦粳3号
T02 绥粳8号 T17 龙粳64号
T03 绥粳15号 T18 龙粳20号
T04 绥粳17号 T19 龙粳21号
T05 垦鉴稻5号 T20 龙粳47号
T06 垦鉴稻6号 T21 龙粳48号
T07 垦稻12号 T22 龙粳50号
T08 垦稻17号 T23 龙粳51号
T09 垦稻23号 T24 龙粳52号
T10 垦粳6号 T25 龙粳55号
T11 龙庆稻1号 T26 龙粳57号
T12 龙庆稻2号 T27 龙粳58号
T13 龙庆稻3号 T28 龙粳59号
T14 龙庆稻5号 T29 龙粳60号
T15 龙庆稻20号

Fig.1

Distribution of adaptive response index of sowing in line under water (ARI) of plant height"

Table 2

Difference of traits under dry breeding seedlings and sparse planting and sowing in line under water"

性状
Trait
旱育稀植
Dry breeding seedlings and sparse planting
水条播
Sowing in line under water
水条播适应性反应指数ARI
平均Mean 变异系数CV(%) 平均Mean 变异系数CV(%) 平均Mean 变异系数CV(%)
株高 Plant height (cm) 98.00 6.26 91.60 7.43 93.6 6.96
穗长Panicle length (cm) 18.30 10.33 16.90 10.12 92.5 8.12
穗重Panicle weight (g) 1.98 14.89 1.70 20.67 86.4 19.17
一次枝梗数Primary branches 10.20 11.92 10.20 14.84 100.0 11.31
二次枝梗数Secondary branches 17.60 20.41 15.20 32.18 87.8 32.71

Fig.2

Distribution of adaptive response index of sowing in line under water (ARI) of panicle length"

Fig.3

Distribution of adaptive response index of sowing in line under water (ARI) of panicle weight"

Fig.4

Distribution of adaptive response index of sowing in line under water (ARI) of primary branches"

Fig.5

Distribution of adaptive response index of sowing in line under water (ARI) of secondary branches"

Table 3

Correlation coefficients between panicle traits and yield and correlation coefficients among their ARI under sowing in line under water treatment"

性状Trait 穗长
Panicle length
穗重
Panicle weight
一次枝梗数
Primary branches
二次枝梗数
Secondary branches
理论产量
Theoretical yield
穗长Panicle length -1 0.35 0.13 -0.45* 0.08
穗重Panicle weight -0.48** 1 0.58** -0.61** 0.56**
一次枝梗数Primary branches -0.37* 0.62** 1 -0.47** 0.22
二次枝梗数Secondary branches -0.75** 0.55** 0.42* -1 0.19
理论产量Theoretical yield -0.06 0.40* 0.14 -0.13 1

Fig.6

Distribution of adaptive response index of sowing in line under water (ARI) of panicles per unit area"

Fig.7

Distribution of adaptive response index of sowing in line under water (ARI) of grains per panicle"

Fig.8

Distribution of adaptive response index of sowing in line under water (ARI) of kernel setting rate"

Fig.9

Distribution of adaptive response index of sowing in line under water (ARI) of 1000-grain weight"

Fig.10

Distribution of adaptive response index of sowing in line under water (ARI) of biological yield"

Fig.11

Distribution of adaptive response index of sowing in line under water (ARI) of economic coefficient"

Fig.12

Distribution of adaptive response index of sowing in line under water (ARI) of theoretical yield"

Table 4

Difference of yield and yield components under dry breeding seedlings and sparse planting and sowing in line under water"

性状Trait 旱育稀植
Dry breeding seedlings and sparse planting
水条播
Sowing in line under water
适应性反应指数
ARI
平均Mean 变异系数CV(%) 平均Mean 变异系数CV(%) 平均Mean 变异系数CV(%)
单位面积穗数Panicles per square meter 506.3 12.45 592.1 16.47 117.4 14.95
穗粒数Grains per panicle 86.6 18.63 70.8 20.35 82.4 15.75
成粒率Kernel setting rate (%) 81.2 12.44 74.6 16.08 92.5 15.89
千粒重1000-grain weight (g) 26.5 5.29 26.2 7.55 98.6 4.12
生物产量Biological yield (t/hm2) 18.6 11.88 17.1 15.38 93.0 17.33
经济系数Economic coefficient 0.499 10.17 0.464 13.16 93.413 13.07
理论产量Theoretical yield (t/hm2) 9.2 12.81 7.9 16.33 85.8 14.01

Table 5

Correlation coefficients between yield components and yield and correlation coefficients among their ARI under sowing in line under water treatment"

性状Trait 单位面积穗数
Panicles per square meter
穗粒数
Grains per panicle
成粒率
Kernel setting rate
千粒重
1000-grain weight
理论产量
Theoretical yield
单位面积穗数Panicles per square meter -1 -0.37* -0.36 -0.28 0.04
穗粒数Grains per panicle -0.53** -1 -0.32 -0.35 0.31
成粒率Kernel setting rate -0.34 -0.19 -1 -0.49** 0.45*
千粒重1000-grain weight -0.07 -0.05 -0.09 -1 0.32
理论产量Theoretical yield -0.03 -0.33 -0.51** -0.06 1

Table 6

Correlation coefficients between panicle traits and yield phenotypic values and their ARI under sowing in line under water treatment"

性状Trait 单位面积穗数
Panicles per square meter
穗粒数
Grains per panicle
成粒率
Kernel setting rate
千粒重
1000-grain weight
理论产量
Theoretical yield
单位面积穗数Panicles per square meter -0.67** -0.23 -0.47** -0.14 -0.11
穗粒数Grains per panicle -0.27 -0.48** -0.03 -0.31 -0.13
成粒率Kernel setting rate -0.15 -0.16 -0.64** -0.40* -0.50**
千粒重1000-grain weight -0.08 -0.12 -0.09 -0.76** -0.15
理论产量Theoretical yield -0.15 -0.16 -0.13 -0.28 -0.62**
[1] 唐海明, 肖小平, 逄焕成 , 等. 双季稻区不同栽培方式对水稻光合生理特性、粒叶比及产量的影响. 中国农业大学学报, 2015,20(4):48-56.
[2] 郑洪帧 . 不同直播栽培方式对水稻生长发育特性及产量形成的影响. 雅安:四川农业大学, 2012.
[3] 金千瑜, 欧阳由男, 陆永良 , 等. 我国南方直播稻若干问题及其技术对策研究. 中国农学通报, 2001,17(5):44-48.
[4] 李旭毅, 池忠志, 姜心禄 , 等. 成都平原水稻直播方式对出苗状况及产量形成的影响. 中国农学通报, 2015,31(9):51-55.
[5] 张文忠, 苏悦, 殷延勃 , 等. 北方水稻直播栽培的农艺问题与对策. 沈阳农业大学学报, 2012,43(6):699-703.
[6] 罗锡文, 刘涛, 蒋恩臣 , 等. 水稻精量穴直播排种轮的设计与试验. 农业工程学报, 2007,23(3):108-112.
[7] 邹应斌, 李克勤, 任泽民 . 水稻的直播与免耕直播栽培研究进展. 作物研究,2003(1):52-59.
[8] 王洋, 张祖立, 张亚双 , 等. 国内外水稻直播种植发展概况. 农机化研究,2007(1):48-50.
[9] 杜娟, 刘国华 . 水稻栽培方式研究进展. 作物研究,2007(S1):593-597.
[10] 冯跃华, 邹应斌, 王淑红 , 等. 免耕对土壤理化性状和直播稻生长及产量形成的影响. 作物研究,2004(3):137-140.
[11] 张祖建, 谢成林, 谢仁康 , 等. 苏中地区直播水稻的群体生产力及氮肥运筹的效应. 作物学报, 2011,37(4):677-685.
[12] 张银平, 杜瑞成, 刁培松 , 等. 山东省水稻免耕旱直播试验及可行性分析. 农业工程学报, 2016,32(12):24-30.
[13] 李艳大, 叶厚专, 古新序 , 等. 江西水稻种植机械化的现状与发展趋势分析. 中国农机化,2012(5):13-16.
[14] 孙海正 . 直播栽培在黑龙江省水稻生产中的应用与技术措施. 中国种业,2012(2):60-61.
[15] 张洪程, 龚金龙 . 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014,47(7):1273-1289.
[16] 吴文革, 陈烨, 钱银飞 , 等. 水稻直播栽培的发展概况与研究进展. 中国农业科技导报, 2006,8(4):32-36.
[17] 俞法明, 杨曙东, 金庆生 , 等. 早籼稻直播适应性种质的筛选研究. 中国农学通报, 2013,29(36):59-62.
[18] 谭可菲, 刘传增, 马波 , 等. 黑龙江西部直播水稻适宜品种筛选. 中国稻米, 2019,25(1):105-107.
[19] 朱傅祥, 戴凌云, 郭登兄 , 等. 不同水稻品种直播产量及其构成因素比较. 安徽农业科学, 2018,46(18):39-41.
[20] 刘元英, 吴振雨, 彭显龙 , 等. 养分管理对寒地直播稻生长发育及产量的影响. 东北农业大学学报, 2014,45(7):1-8.
[21] 赵田芬, 韩根成, 沈庆雷 . 不同播期对直播稻株型及穗部性状影响的研究. 中国稻米, 2014,20(6):78-80.
[22] 霍中洋, 姚义, 张洪程 , 等. 不同播期直播稻氮素吸收、利用效率的差异. 扬州大学学报( 农业与生命科学版), 2012, 33(4):39-45,71.
[23] 姚义, 霍中洋, 张洪程 , 等. 不同生态区播期对直播稻生育期及温光利用的影响. 中国农业科学, 2012,45(4):633-647.
[24] 霍中洋, 姚义, 张洪程 , 等. 不同生育期温光条件对直播稻产量的影响. 核农学报, 2012,26(7):1043-1052.
[25] 王美娥, 钟宗石, 陈明 , 等. 机直播稻不同播期分蘖特性及其与产量构成的关系. 安徽农业科学, 2015,43(27):55-57.
[26] 姚义, 霍中洋, 张洪程 , 等. 播期对麦茬直播粳稻产量及品质的影响. 中国农业科学, 2011,44(15):3098-3107.
[27] 袁志章, 胡祝祥, 华荣 . 直播稻生产现状与应用前景分析. 农业科技通讯,2009(1):89-92.
[1] Hua Yan,Zhongwen Yan,Jie Lei. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[2] Hongtao Shen,Fusheng Zhang,Dong Li,Jianhua Qiu,Xinghong Cai,Yubao Qin. Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang [J]. Crops, 2020, 36(2): 105-111.
[3] Tianwen Wang,Changzhong Li,Guanghai Chen. Effects of Sowing Dates and Densities on Propagation, Growth and Yield of Potato Seeds [J]. Crops, 2020, 36(2): 162-167.
[4] Ruijie Li,Huihui Tang,Qingyan Wang,Yanli Xu,Mengying Fang,Peng Yan,Zhiqiang Dong,Fenglu Zhang. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[5] Diwen Chen,Wenling Zhou,Junhua Ao,Ying Huang,Yong Jiang,Xihong Han,Yimin Qin,Hong Shen. Effects of Seaweed Extract on Yield, Quality and Nitrogen Use Efficiency of Sweet Corn [J]. Crops, 2020, 36(2): 134-139.
[6] Wei Zhou,Fuzhu Cui,Hongkai Duan,Guohua Hao,Hui Yang,Ruirui Liu. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[7] Yanhong Zhao,Wenhuan Hou,Xiaofang Liao,Xingfu Tang,Chuying Li. Effects of Different Sunshine Durations on Main Agronomic Traits of Roselle [J]. Crops, 2020, 36(2): 172-175.
[8] Yegeng Fan,Haifeng Yan,Rongfa Chen,Lihang Qiu,Huiwen Zhou,Xing Huang,Mengling Weng,Jianming Wu,Yangrui Li,Shengman Wei. The Difference of Single Bud Seedling of the Third Generation of Sugarcane Virus-Free Plantlets with Different Seedcane Sizes and Transplanting Effect [J]. Crops, 2020, 36(2): 194-199.
[9] Xin Liu,Rong Zhu,Mei Yang,Zhangyong Liu. Screening of High-Yield Germplasms for Ratoon Rice and Analysis of High Yield Composition [J]. Crops, 2020, 36(2): 28-33.
[10] Weixing Liu,Qunling He,Fengye Zhang,Xiaoyu Fan,Lei Chen,Ke Li,Jihua Wu. AMMI Model Analysis on Regional Trials of Large-Seeded Peanut Varieties [J]. Crops, 2020, 36(2): 60-64.
[11] Zhichang Yang,Tao Shen,Zhuo Luo,Zhi Peng,Yuqian Hu,Tao Zi,Tinghao Xiong,Haixing Song. Effects of Low Nitrogen Rate Combined with High Planting Density on Yield Formation and Nitrogen Use Efficiency of Machine-Transplanted Double Cropping Rice [J]. Crops, 2020, 36(2): 71-81.
[12] Zongjie Ya,Shuchang Lu,Kun Hou. Development Status, Problems and ApplicationProspects of Dry Direct Seeding Rice [J]. Crops, 2020, 36(2): 9-15.
[13] Tianxin Chen,Yanjie Wang,Yan Zhang,Xuhong Chang,Zhiqiang Tao,Demei Wang,Yushuang Yang,Yingjie Zhu,Akang Liu,Shubing Shi,Guangcai Zhao. Effects of Different Nitrogen Rates on Photosyntheticand Physiological Indexes and Yield of Winter Wheat [J]. Crops, 2020, 36(2): 88-96.
[14] Bo Zhang,Tiantian Gao,Hongbo Cheng,Rui Li,Yuwei Chai,Yawei Li,Shouxi Chai. Effects of Mulching on Water Content of Plant and Flag Leaves and Grain Yield of Winter Wheat in Dryland [J]. Crops, 2020, 36(2): 97-104.
[15] An Zhu,Jie Gao,Jian Huang,Hao Wang,Yun Chen,Lijun Liu. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice [J]. Crops, 2020, 36(2): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines)[J]. Crops, 2018, 34(1): 77 -82 .
[2] . [J]. Crops, 1985, 1(3): 3 -5 .
[3] . [J]. Crops, 1994, 10(1): 12 -14 .
[4] . [J]. Crops, 1994, 10(1): 15 -16 .
[5] . [J]. Crops, 1986, 2(2): 29 .
[6] . [J]. Crops, 1992, 8(3): 14 -16 .
[7] . [J]. Crops, 1992, 8(3): 20 -21 .
[8] . [J]. Crops, 1994, 10(2): 21 -22 .
[9] . [J]. Crops, 1994, 10(2): 31 -32 .
[10] . [J]. Crops, 1994, 10(2): 35 -37 .