Crops ›› 2020, Vol. 36 ›› Issue (5): 53-58.doi: 10.16035/j.issn.1001-7283.2020.05.008

Previous Articles     Next Articles

Diversity Analysis of Tartary Buckwheat Germplasms Based on Phenotypic Traits

Yang Xuele(), Zhang Lu, Li Zhiqing, He Luqiu()   

  1. Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
  • Received:2020-01-03 Revised:2020-02-11 Online:2020-10-15 Published:2020-10-12
  • Contact: He Luqiu E-mail:1103301542@qq.com;HLQ4692102@163.com

Abstract:

In order to understand the relationship between yield and agronomic traits of tartary buckwheat, statistical analysis were conducted between the main phenotypic traits and yields of 26 difference tartary buckwheat germplasm resources in this study. The results showed that there were abundant genetic variations among the tartary buckwheat germplasm resources. The variation coefficients of different traits were significantly different, with the largest was primary branch of main stem (33.30%), and the smallest was growth days (6.13%). Correlation analysis showed that varying degrees of correlation were existed among the traits of tartary buckwheat, and most of the traits had positively correlated with the yield. The principal component analysis results showed that the accumulation percentage of 89.55% was from the top three principal components. Cluster analysis divided 26 tartary buckwheat germplasm resources into three categories. The comprehensive traits of the groupⅠwas not outstanding, the groupⅡwas high yield strain, the group Ⅲwas dwarf strain.

Key words: Tartary buckwheat, Phenotypic traits, Yield, Principal component analysis, Cluster analysis

Table 1

Number, name and origin of tested tartary buckwheat germplasm resources"

编号
Number
种质名称
Germplasm
name
来源
Origin
编号
Number
种质名称
Germplasm
name
来源Origin
1 重7010 重庆 14 云荞5号 云南
2 WK-05 贵州 15 WK-2014 贵州
3 QKQ2014-15 贵州 16 QKQ-1-6 贵州
4 赤歌 云南 17 迪苦2号 云南
5 云荞4号 云南 18 九江苦荞 陕西
6 系选-07 四川 19 KQ10-02 陕西
7 蒙0912-5 内蒙古 20 蒙1213-6 内蒙古
8 苦荞1307-1178 贵州 21 通苦荞3号 内蒙古
9 赤苦荞1号 内蒙古 22 赤苦-02 内蒙古
10 KQ11-3 陕西 23 KQ12-03 陕西
11 酉荞1号 重庆 24 定苦2011-003 甘肃
12 西荞5号 四川 25 昭苦4号 云南
13 额乌系选 四川 26 迪苦3号 云南

Table 2

Variation of phenotypic traits of tartary buckwheat germplasm resources"

性状
Trait
最大值
Minimum
最小值
Maximum
平均值
Mean
标准差
Standard deviation
极差
Range
变异系数
Variation coefficient (%)
遗传多样性指数
Genetic diversity index
生育日数Growth days (d) 87.0 66.0 72.6 4.45 21.0 6.13 1.84
株高Plant height (cm) 128.8 71.3 99.5 15.89 57.5 15.97 1.86
主茎分枝数Number of main stem branches 6.4 2.2 4.2 1.38 4.2 33.30 1.88
主茎节数Node number of main stems 15.5 11.7 14.0 1.16 3.8 8.33 1.89
单株粒重Grain weight per plant (g) 4.2 2.1 3.2 0.54 2.1 17.05 1.94
千粒重1000-grain weight (g) 23.7 15.9 19.7 1.99 7.81 10.11 1.91
产量Yield (kg/hm2) 2 042.3 1 060.0 1 615.0 311.36 982.3 19.28 1.90

Table 3

Correlation coefficient of phenotypic traits of tartary buckwheat germplasm resources"

性状
Trait
生育日数
Growth
days
株高
Plant
height
主茎分枝数
Number of main
stem branches
主茎节数
Node number
of main stem
单株粒重
Grain weight
per plant
千粒重
1000-grain
weight
产量
Yield
生育日数Growth days -1
株高Plant height -0.233 1
主茎分枝数Number of main stem branches -0.234 0.376** 1
主茎节数Node number of main stems -0.298* 0.612** 0.575** 1
单株粒重Grain weight per plant -0.010 0.503** 0.314* 0.519** 1
千粒重1000-grain weight -0.051 0.468** 0.440** 0.465** 0.604** 1
产量Yield -0.032 0.518** 0.347* 0.502** 0.844** 0.655** 1

Table 4

Principal component analysis of phenotypic traits of tartary buckwheat germplasm resources"

性状Trait 主成分1 Component 1 主成分2 Component 2 主成分3 Component 3
生育日数Growth days -0.043100 0.948614 0.206475
株高Plant height 0.850305 0.136405 0.272922
主茎分枝数Number of main stem branches 0.773492 0.238072 -0.568200
主茎节数Node number of main stem 0.851034 0.359300 -0.090620
单株粒重Grain weight per plant 0.890826 -0.194660 0.239752
千粒重1000-grain weight 0.888096 -0.211710 0.044407
产量Yield 0.946381 -0.215130 0.042722
特征值Eigen value 4.530000 1.230000 0.510000
贡献率Contribution (%) 64.650000 17.620000 7.280000
累计贡献率Cumulative percentage (%) 64.650000 82.270000 89.550000

Fig.1

Cluster dendrogram of tartary buckwheat germplasm resources based on seven agronomic traits"

Table 5

Agronomic traits of various groups of tartary buckwheat germplasm resources"

性状Trait 第Ⅰ类群Group Ⅰ 第Ⅱ类群Group Ⅱ 第Ⅲ类群Group Ⅲ
均值
Mean
方差
Variance
变异系数
Variation
coefficient (%)
均值
Mean
方差
Variance
变异系数
Variation
coefficient (%)
均值
Mean
方差
Variance
变异系数
Variation
coefficient (%)
生育日数Growth days (d) 71.0 6.40 3.56 71.9 4.10 2.82 74.3 42.01 8.72
株高Plant height (cm) 99.5 200.99 14.25 112.1 163.33 11.40 86.9 72.14 9.78
主茎分枝数
Number of main stem branches
4.4 3.20 41.12 5.1 0.55 14.47 3.0 0.40 20.98
主茎节数
Node number of main stems
14.2 1.23 7.80 14.8 0.51 4.85 13.0 0.78 6.81
单株粒重
Grain weight per plant (g)
3.2 0.02 3.97 3.6 0.18 11.60 2.7 0.08 10.76
千粒重1000-grain weight (g) 19.9 2.82 8.46 21.4 1.37 5.47 17.8 0.90 5.32
产量Yield (kg/hm2) 1 640.6 6 977.81 5.09 1 936.5 7 932.36 4.60 1 278.3 16 191.74 9.95
[1] 林汝法, 柴岩, 廖琴, 等. 中国小杂粮. 北京: 中国农业科学技术出版社, 2002.
[2] 林汝法. 苦荞举要. 北京:中国农业科学技术出版社, 2013.
[3] Bonafaccia G, Marocchini M, Kreft I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemisity, 2003,80(1):9-15.
[4] Fabjan N, Rode J, Kosir I J, et al. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitin. Journal of Agricultural and Food Chemisity, 2003,51(22):6452-6455.
[5] 李春花, 王艳青, 卢文洁, 等. 播期对苦荞品种主要农艺性状及产量的影响. 中国农学通报, 2015,31(18):92-95.
[6] 王炎, 周良, 李振宙, 等. 不同播期对苦荞生长发育及产量和品质的影响. 分子植物育种, 2019,17(10):3456-3460.
[7] 马祥, 刘勇, 魏小星, 等. 不同播期对苦荞‘黑丰一号’产量的影响. 中国农学通报, 2019,35(28):7-10.
[8] 王慧, 杨媛, 杨明君, 等. 不同种植密度对晋荞麦6号产量及构成因素的影响. 山西农业科学, 2013,41(6):572-574.
[9] 靳建刚, 田再芳. 不同种植密度对晋荞麦6号农艺性状及产量的影响. 山西农业科学, 2019,47(7):1182-1184.
[10] 张艳军, 胡选江, 饶敏, 等. 不同种植密度对烟后苦荞产量及生物性状的影响. 农业科技通讯, 2018(9):172-174.
[11] 张伟丽, 白文琴, 白文明, 等. 氮磷钾对苦荞主要农艺性状、产量及干物质积累与分配的影响. 中国土壤与肥料, 2019(2):105-112.
[12] 向达兵, 赵江林, 胡丽雪, 等. 施氮量对苦荞生长发育、产量和品质的影响. 广东农业科学, 2013,40(14):57-59.
[13] 马祥, 魏小星, 刘勇, 等. 施氮量对荞麦产量及品质的影响. 中国农学通报, 2019,35(25):16-20.
[14] 张清明, 马裕群, 赵卫敏, 等. 苦荞麦产量与主要农艺性状的相关性及灰色关联度分析. 耕作与栽培, 2019,39(4):11-14.
[15] 程晓彬, 向达兵, 赵钢, 等. 川西高原不同苦荞品种生态适应性研究. 种子, 2017,36(10):63-65,68.
[16] 赵鑫, 陈少峰, 王慧, 等. 晋北地区不同苦荞品种产量和品质研究. 作物杂志, 2018(5):27-32.
[17] 王欣欣, 卜一, 李炳海, 等. 苦荞麦产量相关因素分析. 北方农业学报, 2017,45(1):10-13.
[18] 张宗文, 林汝法. 荞麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2007.
[19] 聂石辉, 彭琳, 王仙, 等. 鹰嘴豆种质资源农艺性状遗传多样性分析. 植物遗传资源学报, 2015,16(1):64-70.
[20] Keylock C J. Simpson diversity and the Shannon-Wiener index as special cases of a generalized entropy. Oikos, 2005,109(1):203-207.
doi: 10.1111/oik.2005.109.issue-1
[21] 边巴卓玛, 金涛, 杨素涛, 等. 西藏引种苦荞产量稳定性分析. 中国农学通报, 2018,34(33):25-31.
[22] 汪灿, 胡丹, 杨浩, 等. 苦荞主要农艺性状与产量关系的多重分析. 作物杂志, 2013(6):18-22.
[23] 李月, 石桃雄, 黄凯丰, 等. 苦荞生态因子及农艺性状与产量的相关分析. 西南农业学报, 2013,26(1):35-41.
[24] 杨明君, 杨媛, 郭忠贤, 等. 旱作苦荞麦籽粒产量与主要性状的相关分析. 内蒙古农业科技, 2010(2):49-50.
[25] 赵璐, 杨治伟, 部丽群, 等. 宁夏和新疆水稻种质资源表型遗传多样性分析及综合评价. 作物杂志, 2018(1):25-34.
[26] 张帅, 庞玉辉, 王征宏, 等. 小麦种质资源农艺性状变异及其遗传多样性分析. 作物杂志, 2018(2):44-51.
[27] 郜战宁, 冯辉, 薛正刚, 等. 28个大麦品种(系)主要农艺性状分析. 作物杂志, 2018(1):77-82.
[1] Cao Xiaochuang, Li Yefeng, Wu Longlong, Zhu Chunquan, Zhu Lianfeng, Zhang Junhua, Jin Qianyu. Effects of Organic Soluble Fertilizer on the Accumulation and Translocation of Dry Matter and Nitrogen of Rice [J]. Crops, 2020, 36(5): 110-118.
[2] Sun Qi, Geng Yanqiu, Jin Feng, Liu Lixin, Zheng Huantong, Guo Liying, Shao Xiwen. Effects of Sowing Dates on Yield, Dry Matter and Nitrogen Accumulation and Translocationin Organs after Anthesis of Direct Seeding Rice [J]. Crops, 2020, 36(5): 119-126.
[3] Hao Xiyu, Xiao Huanyu, Liang Jie, Wang Yingjie, Guo Wenyun. Effects and Optimum Rates of Nitrogen, Phosphorus and Potassium Fertilizer for Mung Bean [J]. Crops, 2020, 36(5): 127-132.
[4] Luo Yuqiong, Yan Bo, Wu Ke, Xie Huimin, Liang He, Jiang Ligeng. Effects of No-Tillage and Straw Returning on Soil Fertility and Rice Yield in Farmland [J]. Crops, 2020, 36(5): 133-139.
[5] Ding Kaixin, Shan Ying, Feng Naijie, Zheng Dianfeng, Liang Xilong, Wu Qiong, Huang Wenting. Effects of DTA-6 on Physiological Metabolism and Yield of Two Edible Legumes [J]. Crops, 2020, 36(5): 148-153.
[6] Kang Kai, Liu Lihua, Qin Meng, Zheng Guiping, Zhang Xuesong, Bai Chongyang, Zhao Shuang, Gao Xiaohui. Effects of Ridge Tillage of Double Depth and Planting Space on Photosynthesis, Yield and Panicle Traits of Rice [J]. Crops, 2020, 36(5): 164-169.
[7] Luo Xinglu, Huang Xiaofeng, Wu Meiyan, Liu Shanqian, Zhao Bowei. Studies on Physiological Characteristics and Main Agronomic Traits of Five Cassava Varieties [J]. Crops, 2020, 36(5): 182-187.
[8] Zhou Haitao, Zhao Mengyuan, Zhang Xinjun, Li Tianliang, Liu Wenting, Liu Zhenning, Yang Xiaohong, Yuan Huifu. Effects of Mepiquat Chloride and Chlorocholine Chloride on the Growth and Yield of Oat [J]. Crops, 2020, 36(5): 188-193.
[9] Jia Suqing, He Lu, Du Yanwei. Effects of Different Tillage Methods on Root Development,Yield and Water Use Efficiency of Spring Millet in Arid Area [J]. Crops, 2020, 36(5): 194-198.
[10] Zheng Di, Wen Chunyan, Shen Xianhua, Hu Biaolin, Che Jüqin, Xiong Yunhua, Wang Zhiquan, Wu Yanshou. Analysis on Variation in Rice Yield Components and Quality at Different Altitudes in Tibet [J]. Crops, 2020, 36(5): 199-203.
[11] Wang Furong, Zhang Jianxue, Guo Minjiang, Zhang Yahong, Fan Tiping, Wang Yahong, Zhang Yan, Pei Guoping, Lei Jianming. Effects of Post-Emergence Herbicide Spraying at Different Stages on Weed Control, and Yield and Quality of Winter Rapeseed [J]. Crops, 2020, 36(5): 204-208.
[12] Lu Xiaoling, He Ming, Zhang Kaixuan, Liao Zhiyong, Zhou Meiliang. Study on the Cloning and Transformation of Rhamnose Transferase FtF3GT1 Gene in Tartary Buckwheat [J]. Crops, 2020, 36(5): 33-40.
[13] Sun Daowang, Wang Yanqing, Hong Bo, Lu Wenjie, Yin Guifang, Wang Lihua. Principal Component Analysis and Cluster Analysis of Agronomic Traits of Winter Sowing Oats in Yunnan [J]. Crops, 2020, 36(5): 80-87.
[14] Yang Haifeng, Duan Xueyan, Wei Ling, Liu Bo. The Genetic Study of Yield Traits in Edible Sunflower [J]. Crops, 2020, 36(5): 93-97.
[15] Zhang Xiaoyan, Wang Xiaonan, Cao Kun, Sun Yufeng. Correlation Analysis of Fiber Yield and Yield Components in Five Industrial Hemp Varieties (Lines) [J]. Crops, 2020, 36(4): 121-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!