Crops ›› 2022, Vol. 38 ›› Issue (4): 167-171.doi: 10.16035/j.issn.1001-7283.2022.04.023

Previous Articles     Next Articles

Response of Tobacco Seedling Growth and Development to Combined Application of Brassinolide and Microbial Agents

Li Diqin1(), Peng Yuanyuan1, Wang Yan1, Li Sijun2, Peng Tianwei1, Wang Qing1, Li Qiang1, Xie Huiya3()   

  1. 1College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2Chenzhou Company of Hunan Tobacco Company, Chenzhou 423000, Hunan, China
    3Zhuzhou Company of Hunan Tobacco Company, Zhuzhou 412000, Hunan, China
  • Received:2021-04-12 Revised:2022-06-14 Online:2022-08-15 Published:2022-08-22
  • Contact: Xie Huiya E-mail:ldqhnnd2009@163.com;290615790@qq.com

Abstract:

In order to study the effects of brassinolide and Bacillus subtilis on the growth and development of tobacco seedlings, Xiangyan 5 was used as the material, and different concentrations of brassinolide and Bacillus subtilis agents were sprayed on tobacco seedlings of four leaves-one core. The amount of dry matter accumulation, root activity, chlorophyll levels, and related enzyme activities of eight leaves-one core of tobacco seedlings were measured and analysed. The results demonstrated that the amount of dry matter accumulation, root activity, chlorophyll content, and nitrate reductase activity of tobacco seedlings treated with brassinolide and Bacillus subtilis agents were superior to those of the controls; and the treatment of spraying 0.004% brassinolide with 0.25 or 7.50g Bacillus subtilis agent the dry weight of whole plant (4.59g/plant), root activity [90.31μg/(g·h) FW], the max-leaf chlorophyll content (0.5018mg/g FW) and nitrate reductase activity (0.99U/g FW) were the highest and significantly (P < 0.05) higher than that of the control; and activities of superoxide dismutase activity (56.5U/g FW) and peroxidase (2714.7U/g FW), and the content of malondialdehyde (8.8mg/g FW) were the lowest and significantly (P < 0.05) lower than that of the control. The results showed that the mixture of brassinolide and Bacillus subtilis agents could improve the quality of tobacco seedlings and cultivate strong seedlings.

Key words: Flue cured tobacco, Growth and development, Brassinolide, Bacillus subtilis

Fig.1

Dry weight and ratio of fresh to dry weight of different treatments The different small letters indicate significant difference at the 5% level"

Table 1

Chlorophyll contents of the largest leaf and root vigor of different treatments"

处理
Treatment
根系活力
Root vigor [μg/(g·h FW)]
叶绿素a含量
Chlorophyll a content (mg/g FW)
叶绿素b含量
Chlorophyll b content (mg/g FW)
叶绿素(a+b)含量
Chlorophyll (a+b) content (mg/g FW)
T1 90.30±0.50a 0.336±0.002a 0.166±0.010a 0.502±0.002a
T2 69.00±0.59d 0.295±0.002b 0.123±0.001c 0.417±0.003c
T3 81.00±0.13b 0.326±0.001a 0.136±0.001b 0.462±0.001b
T4 66.90±0.13e 0.280±0.001bc 0.110±0.001e 0.390±0.001d
T5 74.10±0.15c 0.319±0.001a 0.117±0.002d 0.437±0.002c
T6 64.10±0.17f 0.264±0.001c 0.086±0.001f 0.351±0.001e
CK 60.10±0.17g 0.199±0.034d 0.073±0.001e 0.273±0.034f

Table 2

Enzymes activities and MDA contents in the largest leaf of different treatments"

处理
Treatment
SOD活性
SOD activity (U/g FW)
POD活性
POD activity (U/g FW)
CAT活性
CAT activity (U/g FW)
NR活性
NR activity (U/g FW)
MDA含量
MDA content (mg/g FW)
T1 56.5±1.1e 2714.7±40.7e 10.0±0.4f 0.99±0.02a 8.8±0.0g
T2 69.7±0.5c 3110.8±61.5c 32.9±0.2c 0.54±0.01d 12.1±0.0d
T3 59.2±2.0de 2934.7±47.4d 12.6±0.2e 0.86±0.01b 10.4±0.0f
T4 79.4±1.6b 3566.7±50.4b 36.9±0.2b 0.49±0.01e 12.9±0.0c
T5 61.7±1.0d 3039.3±131.2cd 13.7±0.2d 0.76±0.01c 11.4±0.0e
T6 82.0±0.7ab 3680.6±59.4b 36.9±0.3b 0.47±0.01f 13.6±0.1b
CK 84.7±2.6a 4219.6±30.0a 41.0±0.2a 0.43±0.01g 15.9±0.1a

Table 3

Correlation of dry matter content with enzyme activities and MDA content"

部位Position SOD活性
SOD activity
POD活性
POD activity
CAT活性
CAT activity
NR活性
NR activity
MDA含量
MDA content
根干重Root dry weight -0.9637** -0.9348** -0.9608** 0.9153** -0.9032**
茎干重Stem dry weight -0.8947** -0.8224** -0.7940* 0.8907** -0.9528**
叶干重Leaf dry weight -0.9136** -0.9748** -0.9161** 0.9689** -0.8610**

Table 4

Correlation between the largest leaf chlorophyll content and enzyme activities and MDA content"

指标
Index
叶绿素a含量
Chlorophyll a
content
叶绿素b含量
Chlorophyll b
content
叶绿素(a+b)含量
Chlorophyll
(a+b) content
SOD活性
SOD activity
0.903** 0.899** 0.925**
POD活性
POD activity
0.869* 0.932** 0.918**
CAT活性
CAT activity
0.826* 0.831* 0.851*
NR活性
NR activity
0.838* 0.892** 0.883**
MDA含量
MDA content
0.862* 0.956** 0.922**
[1] 李生, 李思军, 陈焘, 等. 循环运动机械化育苗方式对烤烟烟苗素质的影响. 作物研究, 2020, 34(5):444-446,458.
[2] 吴杰, 冉茂, 宗学凤, 等. 烤烟浅水育苗与漂浮育苗技术的比较研究. 西南农业学报, 2011, 24(6):2443-2445.
[3] 朱振国. 六种植物生长调节剂对烟草幼苗生长发育的影响. 泰安:山东农业大学, 2019.
[4] 梁琼月, 潘明君, 尹永强, 等. 育苗期施用复合植物生长调节剂对烤烟生长、产量及品质的影响. 甘肃农业大学学报, 2020, 55(2):98-104.
[5] 杨波, 苏鸿雁, 刘硕然. 干旱胁迫下不同植物生长调节剂对烟草幼苗抗逆性的影响. 西南农业学报, 2014, 27(6):2661-2665.
[6] 周晓艺, 薛红卫. 生长素与油菜素甾醇相互作用机制的研究进展. 中国科学:生命科学, 2013, 43(12):1047-1053.
[7] 阮英慧, 董守坤, 刘丽君, 等. 干旱胁迫下油菜素内酯对大豆花期生理特性的影响. 作物杂志, 2011(6):33-37.
[8] 孙石昂, 何发林, 姚向峰, 等. 芸苔素内酯可提高玉米幼苗的抗旱性. 植物生理学报, 2019, 55(6):829-836.
[9] Anjum S A, Wang L C, Farooq M, et al. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 2011, 197(3):177-185.
doi: 10.1111/j.1439-037X.2010.00459.x
[10] 褚世海, 李林, 朱文达. 0.01%芸苔素内酯水剂对水稻生长、产量和品质的影响. 湖北农业科学, 2016, 55(24):6445-6447.
[11] 李红, 赵冰梅, 吴文忠, 等. 芸乐收对棉花抗逆增产效果. 中国棉花, 2018, 45(5):23-25.
[12] 孙晓, 姜兴印, 姚晨涛, 等. 3种不同结构芸苔素内酯在棉花上的应用研究. 中国农学通报, 2019, 35(11):121-126.
[13] 陆宁海, 郎剑锋, 张俊伟, 等. 芸苔素内酯对小麦种子萌发、幼苗生长及茎基腐病的影响. 河南科技学院学报(自然科学版), 2015, 43(3):31-35.
[14] 蒋南, 龚湛武, 陈力力, 等. 施用枯草芽孢杆菌的土壤养分含量与三大微生物间灰色关联分析. 作物杂志, 2019(3):142-149.
[15] 杨超才, 朱列书, 李迪秦, 等. 不同枯草芽孢杆菌用量对植烟土壤养分含量的影响. 西南农业学报, 2018, 31(4):779-785.
[16] Shasmita, Swain H, Naik S K, et al. Comparative analysis of different biotic and abiotic agents for growth promotion in rice (Oryza sativa L.) and their effect on induction of resistance against Rhizoctonia solani:A soil borne pathogen. Biological Control, 2019(133):123-133.
[17] 杜公福, 李晓亮, 戚志强, 等. 硫酸亚铁协同枯草芽孢杆菌对辣椒疫病抑制作用研究. 植物保护, 2020, 46(5):142-149.
[18] 黄亚丽, 郑立伟, 黄媛媛, 等. 枯草芽孢杆菌菌剂不同施用方式对甜瓜土壤微生物多样性及生长的影响. 生物工程学报, 2020, 36(12):2644-2656.
[19] 易有金, 肖浪涛, 王若仲, 等. 内生枯草芽孢杆菌B-001对烟草幼苗的促生作用及其生长动态. 植物保护学报, 2007, 34(6):619-623.
[20] 汤小朋, 陈磊, 熊康宁. 有效微生物菌群在贵州喀斯特地区农业生产中的应用前景展望. 中国农业科技导报, 2020, 22(4):129-138.
doi: 10.13304/j.nykjdb.2019.0134
[21] 黄亚丽, 郑立伟, 黄媛媛, 等. 枯草芽孢杆菌菌剂不同施用方式对甜瓜土壤微生物多样性及生长的影响. 生物工程学报, 2020, 36(12):2644-2656.
[22] 肖浪涛, 王三根. 植物生理学实验技术. 北京: 中国农业出版社, 2005.
[23] 韩景峰. 烟草栽培生理. 北京: 中国农业出版社, 2003.
[24] 王慧芳, 张希, 冯小虎, 等. 不同植物生长调节剂对烤烟生长发育的影响. 作物杂志, 2021(3):173-177
[25] 孙中华, 赵铂锤, 陈仕红, 等. 枯草芽孢杆菌B67对黄瓜幼苗生长发育的影响. 中国瓜菜, 2017, 30(2):15-18.
[26] 邓闻杨, 罗学刚, 罗蓝, 等. 混合接种3种微生物对凤眼莲吸附铀的影响. 核农学报, 2018, 32(9):1864-1871.
doi: 10.11869/j.issn.100-8551.2018.09.1864
[27] 高玉红, 闫生辉, 邓黎黎. 逆境胁迫对甜瓜幼苗生长的影响及综合抗逆鉴定指标的筛选. 江苏农业科学, 2018, 46(15):116-1118.
[28] 温日宇, 刘建霞, 张珍华, 等. 干旱胁迫对不同藜麦种子萌发及生理特性的影响. 作物杂志, 2019(1):121-126.
[29] 李安, 舒健虹, 刘晓霞, 等. 干旱胁迫下枯草芽孢杆菌对玉米种子抗旱性及生理指标的影响. 作物杂志, 2021(6):217-223.
[1] Meng Fan, Luo Jianxin, Cai Ye, Yu Ying, Yang Lei, Zhou Wanchun. Effects of Soil Available Phosphorus on Tobacco Growth and Dry Matter Accumulation and Distribution [J]. Crops, 2022, 38(2): 203-210.
[2] Li An, Shu Jianhong, Liu Xiaoxia, Meng Zhengbing, Wang Xiaoli, Zhao Degang. Effects of Bacillus subtilis on Drought Resistance and Physiological Indexes of Maize Seeds under Drought Stress [J]. Crops, 2021, 37(6): 217-223.
[3] Liu Xin, Li Huixia, Tian Gang, Wang Yuwen, Liu Hong, Cao Jinjun, Cheng Kai, Wang Zhenhua, Liu Yongzhong, Li Wanxing. Effects of Water Control during the Whole Growth Period on the Growth Development and Quality of Millet [J]. Crops, 2021, 37(5): 181-186.
[4] Li Jie, Zhang Xiaoning, Jin Fansheng, Han Yanlong, Li Haijin. Response of Kidney Bean Growth and Yield to Planting Density in the Dry Year [J]. Crops, 2021, 37(2): 140-146.
[5] Li Diqin, Wang Qing, Hu Yajie, Wang Yan, Wang Yanni, Zhong Yi, Liu Minghui, Ding Chunxia. Study on Tolerance of Xiangyan 5 to Cadmium in Tobacco-Growing Soil [J]. Crops, 2021, 37(1): 182-186.
[6] Han Yunfei, Gao Riping, Ren Yongfeng, Zhao Peiyi, Liu Xiaoyue, Gao Yu, Zhang Peng, Liang Guangrong, Gao Jinlong. Effects of Sowing Dates on Growth and Yield of Hairy Vetch [J]. Crops, 2020, 36(6): 151-157.
[7] Hu Jifang. Effects of Water Control on Growth and Development and Yield of Different Upland Rice Varieties during Jointing-Booting Stage [J]. Crops, 2020, 36(4): 178-182.
[8] Li Bo,Gong Liang,Qu Hang,Jin Dandan,Sun Wentao. Effects of Nitrogen Application Rate on Rice Growth and Yield in Liaohe Delta [J]. Crops, 2020, 36(1): 173-178.
[9] Xia Yuanye,Du Zhimin,Yang Yuchen,Gong Yanlong,Yan Zhiqiang,Xu Hai. Effects of Epi-Brassinolide Treatments on Floret Opening Time of Indica and Japonica Rice [J]. Crops, 2019, 35(4): 139-147.
[10] Qi Deqiang,Zhao Jingjing,Feng Naijie,Zheng Dianfeng,Liang Xiaoyan. Effects of S3307 and DTA-6 on Sugar Metabolism and Yield of Potato Leaves and Tubers [J]. Crops, 2019, 35(4): 148-153.
[11] Huang Wan,Li Chenxi,Tan Xueming,Zeng Yongjun,Wu Ziming,Liu Taoju,Shi Qinghua,Pan Xiaohua,Zeng Yanhua. Effects of Different Direct Seeding Methods on Growth and Development Characteristics and Yield of Late-Rice [J]. Crops, 2019, 35(4): 159-163.
[12] Zhenjie Zhao,Taibo Liang,Qiansi Chen,Liwei Hu,Yanling Zhang,Qisheng Yin. The Growth and Development of Plants Regulated by Carbon Nano-Materials [J]. Crops, 2017, 33(2): 7-13.
[13] Kun Zhang,Weisheng Lü,Licheng Duan,Shuixiu Hu,Yongjun Zeng,Xiaohua Pan,Qinghua Shi. Effects of Mechanical Transplanting on Plant Growth and Growth Period in Late Rice [J]. Crops, 2016, 32(5): 112-118.
[14] Shaomin Wang,Shumei Guo,Zhenfu Niu,He Zhang. Effects of Fenaminstrobin-Difenoconazole-Thiamethoxam 45% FSC on Growth,Development,Main Diseases and Insect Pests in Winter Wheat [J]. Crops, 2016, 32(4): 167-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!