Crops ›› 2022, Vol. 38 ›› Issue (4): 214-220.doi: 10.16035/j.issn.1001-7283.2022.04.030

Previous Articles     Next Articles

Effects of Exogenous SLs and Nano-K2MoO4 on Seed Germination of Brassica napus L. under Drought Stress

Pang Xingyue(), Wan Lin, Li Su, Wang Yuhang, Liu Chen, Xiao Xiaolu, Li Xinhao, Ma Ni()   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2021-04-22 Revised:2021-07-10 Online:2022-08-15 Published:2022-08-22
  • Contact: Ma Ni E-mail:pangxingyue58@qq.com;mani@caas.cn

Abstract:

Drought stress is one of the major abiotic constraints affecting rapeseed (Brassica napus L.) germination and growth. Using Q2 (drought-resistant) and Qinyou 8 (sensitive) as materials, the effects of drought on germination and the physiological mechanmism of seed germination under drought treated by exogenous growth regulators strigolactones (SLs) and nanomaterials (n-K2MoO4) were explored. The findings demonstrated that drought stress significantly inhibited seed germination, SLs and n-K2MoO4 significantly increased germination rate, seedling dry weight, and cotyledon chlorophyll content, as well as superoxide dismutase and peroxidase activities and soluble sugar, proline, and decreased malondialdehyde contents. In comparison to other treatments, 0.10μmol/L GR24 with 0.24mmol/L n-K2MoO4 exhibited stronger mitigation effects on seed germination and oxidative damage. According to this study, exogenous SLs and n-K2MoO4 could increase the activities of protective enzymes and the levels of osmotic regulators during rapeseed germination, which improved the ability to withstand drought. The results indicate plant hormones and nanomaterials might be used in agriculture.

Key words: Strigolactones, Nanomaterial, Drought stress, Seed germination, Physiological mechanism

Table 1

Effects of drought and SLs、n-K2MoO4 on the germination traits of rapeseed under drought stress"

品种
Variety
处理
Treatment
GR (%) GI MT VI 出苗率
Rate of emergence (%)
Q2 CK1 100.00±0.00a 58.82±1.15a 1.10±0.09e 515.82±35.92b 97.78±3.85a
CK2 98.89±0.96a 30.88±0.70f 3.30±0.11b 51.46±7.43f 35.56±10.18d
T1 100.00±0.00a 53.18±1.60bc 1.48±0.13de 686.09±13.22a 73.33±2.89b
T2 100.00±0.00a 36.80±0.19e 2.73±0.05c 257.13±10.51d 62.22±11.10bc
T3 100.00±0.00a 51.25±1.25cd 1.61±0.11d 189.78±4.88e 76.11±10.72b
秦优8号 CK1 100.00±0.00a 55.40±2.92ab 1.32±0.21de 454.05±43.46c 96.67±4.41a
Qinyou 8 CK2 40.67±16.17b 8.06±1.84g 6.64±0.85a 16.55±5.95f 16.67±6.67e
T1 98.89±1.93a 39.77±0.49e 2.58±0.05c 456.9±45.99c 34.44±2.55d
T2 98.61±0.00a 31.38±3.98f 3.04±0.13bc 147.65±1.84e 44.44±12.95 d
T3 98.89±1.93a 49.39±1.40d 1.72±0.17d 186.54±57.76e 49.44±13.98cd

Table 2

Effects of drought and SLs、n-K2MoO4 on the agronomic traits of rape seedlings under drought stress"

品种
Variety
处理
Treatment
干重(mg/株)
Dry weight (mg/plant)
主根长(cm/株)
Main root length (cm/plant)
侧根长(cm/株)
Lateral root length (cm/plant)
侧根数
Root hair number
Q2 CK1 30.90±1.59cd 7.40±0.72c 7.09±1.41a 8.00±1.31b
CK2 25.47±5.18ef 1.40±0.18g 1.12±0.40ef 2.00±0.36c
T1 37.46±2.75a 12.24±0.43a 3.17±0.85bc 10.00±2.31a
T2 36.93±1.53a 6.15±0.47d 2.12±1.49cde 3.00±1.22c
T3 35.57±1.40ab 2.96±0.07ef 1.27±0.21def 4.00±0.58c
秦优8号 CK1 26.97±0.90de 7.08±0.50cd 4.19±0.26b 7.00±1.67b
Qinyou 8 CK2 21.40±1.82f 2.05±0.41fg 0.32±0.07f 1.00±0.23c
T1 27.30±1.70de 10.87±0.77b 3.59±0.76bc 11.00±0.67a
T2 32.33±1.60bc 3.63±0.45e 2.40±0.40cd 3.00±0.50c
T3 31.10±3.30cd 3.22±1.37e 1.23±0.35def 3.00±0.58c

Table 3

Effects of drought and SLs、n-K2MoO4 on chlorophyll content of rape seedlings under drought stress mg /g FW"

处理
Treatment
Chl a Chl b Chl a+b Chl a/Chl b
Q2 秦优8号
Qinyou 8
Q2 秦优8号
Qinyou 8
Q2 秦优8号
Qinyou 8
Q2 秦优8号
Qinyou 8
CK1 8.93±0.32bc 6.78±0.66e 4.40±0.19abc 3.97±0.36bce 13.33±0.49bc 10.75±1.02d 2.03±0.04bc 1.71±0.01d
CK2 7.22±0.31e 5.47±0.37f 3.84±0.19cef 3.31±0.24f 11.06±0.37d 8.78±0.60e 1.88±0.12d 1.65±0.03e
T1 8.28±0.12cd 6.89±0.60e 4.27±0.19abc 4.10±0.29bce 12.55±0.31c 10.98±0.39d 1.94±0.06c 1.69±0.27d
T2 10.04±0.59a 7.96±0.29d 4.73±0.20a 4.77±0.88a 14.77±0.79a 12.72±0.59c 2.12±0.05a 1.71±0.35c
T3 9.45±0.42ab 5.93±0.32f 4.53±0.14ab 3.58±0.08ef 13.98±0.57ab 9.52±0.40e 2.08±0.03ab 1.65±0.06e

Fig.1

Effects of drought and SLs, n-K2MoO4 on the SOD and POD activities of oilseed rape leaves Different letters mean significant difference among treatments at the 5% level, the same below。。"

Fig.2

Effects of drought and SLs, n-K2MoO4 on the active oxygen contents of oilseed rape leaves"

Fig.3

Effects of drought and SLs, n-K2MoO4 on soluble sugar and proline contents of rape leaves"

Table 4

Correlation coefficients between seed germination parameters and physiological indexes in seedlings"

指标Index GR GI VI MT DW LRL MRL Chl SOD POD MDA H2O2 O-2· Pro SS
GR 1
GI 0.731**
VI 0.462* 0.683**
MT -0.836** -0.965** -0.626**
DW 0.591** 0.428* 0.455* -0.514**
LRL 0.067 0.438* 0.650** -0.303 -0.066
MRL 0.211 0.357 0.878** -0.330 0.227 0.561**
Chl 0.543** 0.334 0.339 -0.389 0.727** 0.115 0.183
SOD 0.201 -0.027 -0.124 -0.064 0.470* -0.585** -0.177 0.108
POD 0.287 0.154 -0.056 -0.198 0.519** -0.489** -0.154 0.080 0.744**
MDA -0.817** -0.925** -0.530** 0.939** -0.511** -0.361 -0.169 -0.506** -0.089 -0.169
H2O2 -0.629** -0.862** -0.720** 0.844** -0.478** -0.658** -0.417* -0.486** 0.126 -0.027 0.883**
O-2· -0.889** -0.890** -0.645** 0.935** -0.672** -0.322 -0.358 -0.670** -0.105 -0.232 0.927** 0.852**
Pro 0.308 0.062 -0.136 -0.146 0.576** -0.596** -0.234 0.320 0.909** 0.789** -0.188 0.081 -0.260
SS 0.181 -0.130 -0.185 0.040 0.453* -0.647** -0.165 0.280 0.887** 0.562** -0.023 0.195 -0.115 0.891** 1
[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40(5):613-617.
[2] 刘吉磊. 长江中下游地区油菜生产能力遥感估算及增产潜力分析. 北京: 中国科学院大学, 2015.
[3] 张树杰, 王汉中. 我国油菜生产应对气候变化的对策和措施分析. 中国油料作物学报, 2012, 34(1):114-122.
[4] 张静. 干旱对油菜萌发出苗与生长的影响及抗旱机制研究. 武汉:华中农业大学, 2015.
[5] Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 2005, 435(7043):824-827.
doi: 10.1038/nature03608
[6] Mostofa M G, Li W, Nguyen K H, et al. Strigolactones in plant adaptation to abiotic stresses:An emerging avenue of plant research. Plant Cell and Environment, 2018, 41(10):2227-2243.
doi: 10.1111/pce.13364
[7] Van H C, Leyva M, Osakabe Y, et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(2):851-865.
[8] Ma N, Hu C, Wan L, et al. Strigolactones improve plant growth,photosynthesis,and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Frontiers in Plant Science, 2017, 8:1671.
doi: 10.3389/fpls.2017.01671
[9] 程鸿燕. 独脚金内酯对干旱胁迫下谷子生理生化及转录组响应模式的影响. 太原:山西农业大学, 2019.
[10] 万林, 李张开, 李素, 等. 外源独脚金内酯对油菜苗期干旱胁迫的缓解效应. 中国油料作物学报, 2020, 42(3):461-471.
[11] 尹勇, 刘灵. 三种纳米材料对水稻幼苗生长及根际土壤肥力的影响. 农业资源与环境学报, 2020, 37(5):736-743.
[12] 路轲. 喷施不同纳米材料对水稻幼苗生长和磷吸收的影响. 北京: 中国农业科学院, 2020.
[13] 姜余梅, 刘强, 赵怡情, 等. 碳纳米管对水稻种子萌发和根系生长的影响. 湖北农业科学, 2014(5):1010-1012.
[14] Xiong J L, Li J, Wang H C, et al. Fullerol improves seed germination,biomass accumulation,photosynthesis and antioxidant system in Brassica napus L. under water stress. Plant Physiology and Biochemistry, 2018, 129:130-140.
doi: 10.1016/j.plaphy.2018.05.026
[15] 张坤. 钼酸锌纳米片的制备及其非线性光学特性研究. 哈尔滨:哈尔滨工程大学, 2019.
[16] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[17] 尹美强, 王栋, 王金荣, 等. 外源一氧化氮对盐胁迫下高粱种子萌发及淀粉转化的影响. 中国农业科学, 2019, 52(22):4119-4128.
[18] Rivero R M, Shulaev V, Blumwald E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiology, 2009, 150(3):1530-1540.
doi: 10.1104/pp.109.139378 pmid: 19411371
[19] Khan M N, Zhang J, Luo T, et al. Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification:Antioxidant defense system,osmotic adjustment,stomatal traits and chloroplast ultrastructure perseveration. Industrial Crops and Products, 2019, 140(15):111597.
doi: 10.1016/j.indcrop.2019.111597
[20] 何久军, 赵淑玲, 王昱, 等. PEG-6000胁迫对三种类型鲜食玉米种子萌发的影响. 种子, 2021, 40(2):96-101,105.
[21] 胡承伟, 张学昆, 邹锡玲, 等. PEG模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性. 中国油料作物学报, 2013, 35(1):48-53.
[22] 杨春杰, 张学昆, 邹崇顺, 等. PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响. 中国油料作物学报, 2007(4):425-430.
[23] Meloni D A, Oliva M A, Martinez C A, et al. Photosynthesis and activity of superoxide dismutase,peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 2003, 49(1):69-76.
doi: 10.1016/S0098-8472(02)00058-8
[24] Nath M, Bhatt D, Prasad R, et al. Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and piriformospora indica interaction under stress condition. Frontiers in Plant Science, 2016, 7:1574.
[25] Apel K, Hirt H. Reactive oxygen species:Metabolism,oxidative stress,and signal transduction. Annual Review of Plant Biology, 2004, 55:373-99.
doi: 10.1146/annurev.arplant.55.031903.141701
[26] 肖爽, 韩雨辰, 号宇然, 等. 聚乙二醇引发对盐胁迫下棉种萌发及生理特性的影响. 核农学报, 2021, 35(1):202-210.
doi: 10.11869/j.issn.100-8551.2021.01.0202
[27] NiuY F, Chai R S, Jin G L, et al. Responses of root architecture development to low phosphorus availability:a review. Annals of Botany, 2013, 112(2):391-408.
doi: 10.1093/aob/mcs285
[28] 吴佳妮, 杨天志, 连加, 等. 聚苯乙烯纳米塑:(PSNPs)对大豆(Glycinemax)种子发芽和幼苗生长的影响. 环境科学学报, 2020, 40(12):4581-4589.
[29] Sun H, Tao J, Liu S, et al. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. Journal Experimental Botany, 2014, 65(22):6735-6746.
doi: 10.1093/jxb/eru029
[30] 陆长梅, 张超英, 温俊强, 等. 纳米材料促进大豆萌芽、生长的影响及其机理研究. 大豆科学, 2002(3):168-171,241.
[31] 李畅, 苏家乐, 刘晓青, 等. 干旱胁迫对鹿角杜鹃种子萌发和幼苗生理特性的影响. 西北植物学报, 2015, 35(7):1421-1427.
[32] Mojde S, Zeinolabedin T S, Yahya E, et al. Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought. Plant Physiology and Biochemistry, 2017, 119:59-69.
doi: 10.1016/j.plaphy.2017.08.015
[33] 邹京南, 曹亮, 王梦雪, 等. 外源褪黑素对干旱胁迫下大豆结荚期光合及生理的影响. 生态学杂志, 2019, 38(9):2709-2718.
[1] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
[2] Tan Qinliang, Cheng Qin, Pan Chenglie, Zhu Pengjin, Li Jiahui, Song Qiqi, Nong Zemei, Zhou Quanguang, Pang Xinhua, Lü Ping. Effects of Drought Stress on Physiological Indexes of New Sugarcane Variety Guire 2 [J]. Crops, 2022, 38(3): 161-167.
[3] Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199.
[4] Lu Jun, Qian Yu, Yang Liu, Wang Yong, Chen Yulan. Effects of Storage Time on Seed Germination and Physiological Characteristics of Tobacco Variety Honghuadajinyuan [J]. Crops, 2022, 38(2): 211-214.
[5] Du Xin, Li Bo, Mao Luxiao, Chen Wei, Zhang Yuxian, Cao Liang. Effects of Melatonin on Yield and AsA-GSH Cycle in Soybean under Drought Stress [J]. Crops, 2022, 38(1): 174-178.
[6] Li An, Shu Jianhong, Liu Xiaoxia, Meng Zhengbing, Wang Xiaoli, Zhao Degang. Effects of Bacillus subtilis on Drought Resistance and Physiological Indexes of Maize Seeds under Drought Stress [J]. Crops, 2021, 37(6): 217-223.
[7] Chen Fang, Gu Xiaoping, Yu Fei, Hu Jiamin, Zuo Jin, Hu Xinxin, Liu Yupeng, Hu Feng. Response of Photosynthetic Physiological Characteristics of Pepper in Guizhou under Drought Stress [J]. Crops, 2021, 37(5): 160-165.
[8] Lü Wei, Ren Guoxiang, Han Junmei, Wen Fei, Wang Ruopeng, Liu Wenping. Effects of Drought Stress on Physiological and Biochemical Indexes of Sesame Seedlings [J]. Crops, 2021, 37(5): 172-175.
[9] Pei Zhichao, Zhou Jihua, Xu Xiangdong, Lan Hongliang, Wang Junying, Lang Shuwen, Zhang Weiqiang. Effects of Drought Treatment on Photosynthesis Rate, Antioxidant Properties of Leaves and Yield of Different Maize Varieties [J]. Crops, 2021, 37(5): 95-100.
[10] Yan Feng, Li Qingquan, Dong Yang, Ji Shengdong, Han Yehui, Yu Yunkai, Wang Lida, Zhao Suo. Effects of 60Co-γ Radiation on the Seed Germination and Seedling Growth of Broomcorn Millet [J]. Crops, 2021, 37(4): 202-205.
[11] Song Ruijiao, Feng Caijun, Qi Juncang. Effects of Hydrogen-Rich Water on Barley Seed Germination and Barley Seedling Biomass Distribution under Drought Stress [J]. Crops, 2021, 37(4): 206-211.
[12] Shen Jie, Wang Yuguo, Guo Pingyi, Yuan Xiangyang. Effects of Humic Acid on Ascorbate-Glutathione Cycle in the Leaves of Foxtail Millet Seedlings under Drought Stress [J]. Crops, 2021, 37(2): 173-177.
[13] Han Duohong, Wang Enjun, Zhang Yong, Wang Hongxia, Wang Yan, Wang Fu. Effects of Exogenous Spermidine and Glycine Betaine on Seed Germination and Physiological Characteristics of Isatis indigotica Fort. Seedlings under Drought Stress [J]. Crops, 2021, 37(1): 118-123.
[14] Deng Wanyue, Leng Qiuyan, Yang Zaijun, Yu Yan, Wu Yichao. Effects of Simulated Drought Stress on the Physiological Indexes and Contents of Active Components of Potted "Chuandanshen 1" [J]. Crops, 2021, 37(1): 74-81.
[15] Yang Juan, Jiang Yangming, Zhou Fang, Zhang Jun, Luo Haideng, Tian Shanjun. Effects of PEG Simulated Drought Stress on Seedling Morphology and Physiological Characteristics of Different Drought-Resistance Maize Varieties [J]. Crops, 2021, 37(1): 82-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!