Crops ›› 2022, Vol. 38 ›› Issue (4): 214-220.doi: 10.16035/j.issn.1001-7283.2022.04.030
Previous Articles Next Articles
Pang Xingyue(), Wan Lin, Li Su, Wang Yuhang, Liu Chen, Xiao Xiaolu, Li Xinhao, Ma Ni()
[1] | 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40(5):613-617. |
[2] | 刘吉磊. 长江中下游地区油菜生产能力遥感估算及增产潜力分析. 北京: 中国科学院大学, 2015. |
[3] | 张树杰, 王汉中. 我国油菜生产应对气候变化的对策和措施分析. 中国油料作物学报, 2012, 34(1):114-122. |
[4] | 张静. 干旱对油菜萌发出苗与生长的影响及抗旱机制研究. 武汉:华中农业大学, 2015. |
[5] |
Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 2005, 435(7043):824-827.
doi: 10.1038/nature03608 |
[6] |
Mostofa M G, Li W, Nguyen K H, et al. Strigolactones in plant adaptation to abiotic stresses:An emerging avenue of plant research. Plant Cell and Environment, 2018, 41(10):2227-2243.
doi: 10.1111/pce.13364 |
[7] | Van H C, Leyva M, Osakabe Y, et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(2):851-865. |
[8] |
Ma N, Hu C, Wan L, et al. Strigolactones improve plant growth,photosynthesis,and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Frontiers in Plant Science, 2017, 8:1671.
doi: 10.3389/fpls.2017.01671 |
[9] | 程鸿燕. 独脚金内酯对干旱胁迫下谷子生理生化及转录组响应模式的影响. 太原:山西农业大学, 2019. |
[10] | 万林, 李张开, 李素, 等. 外源独脚金内酯对油菜苗期干旱胁迫的缓解效应. 中国油料作物学报, 2020, 42(3):461-471. |
[11] | 尹勇, 刘灵. 三种纳米材料对水稻幼苗生长及根际土壤肥力的影响. 农业资源与环境学报, 2020, 37(5):736-743. |
[12] | 路轲. 喷施不同纳米材料对水稻幼苗生长和磷吸收的影响. 北京: 中国农业科学院, 2020. |
[13] | 姜余梅, 刘强, 赵怡情, 等. 碳纳米管对水稻种子萌发和根系生长的影响. 湖北农业科学, 2014(5):1010-1012. |
[14] |
Xiong J L, Li J, Wang H C, et al. Fullerol improves seed germination,biomass accumulation,photosynthesis and antioxidant system in Brassica napus L. under water stress. Plant Physiology and Biochemistry, 2018, 129:130-140.
doi: 10.1016/j.plaphy.2018.05.026 |
[15] | 张坤. 钼酸锌纳米片的制备及其非线性光学特性研究. 哈尔滨:哈尔滨工程大学, 2019. |
[16] | 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. |
[17] | 尹美强, 王栋, 王金荣, 等. 外源一氧化氮对盐胁迫下高粱种子萌发及淀粉转化的影响. 中国农业科学, 2019, 52(22):4119-4128. |
[18] |
Rivero R M, Shulaev V, Blumwald E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiology, 2009, 150(3):1530-1540.
doi: 10.1104/pp.109.139378 pmid: 19411371 |
[19] |
Khan M N, Zhang J, Luo T, et al. Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification:Antioxidant defense system,osmotic adjustment,stomatal traits and chloroplast ultrastructure perseveration. Industrial Crops and Products, 2019, 140(15):111597.
doi: 10.1016/j.indcrop.2019.111597 |
[20] | 何久军, 赵淑玲, 王昱, 等. PEG-6000胁迫对三种类型鲜食玉米种子萌发的影响. 种子, 2021, 40(2):96-101,105. |
[21] | 胡承伟, 张学昆, 邹锡玲, 等. PEG模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性. 中国油料作物学报, 2013, 35(1):48-53. |
[22] | 杨春杰, 张学昆, 邹崇顺, 等. PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响. 中国油料作物学报, 2007(4):425-430. |
[23] |
Meloni D A, Oliva M A, Martinez C A, et al. Photosynthesis and activity of superoxide dismutase,peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 2003, 49(1):69-76.
doi: 10.1016/S0098-8472(02)00058-8 |
[24] | Nath M, Bhatt D, Prasad R, et al. Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and piriformospora indica interaction under stress condition. Frontiers in Plant Science, 2016, 7:1574. |
[25] |
Apel K, Hirt H. Reactive oxygen species:Metabolism,oxidative stress,and signal transduction. Annual Review of Plant Biology, 2004, 55:373-99.
doi: 10.1146/annurev.arplant.55.031903.141701 |
[26] |
肖爽, 韩雨辰, 号宇然, 等. 聚乙二醇引发对盐胁迫下棉种萌发及生理特性的影响. 核农学报, 2021, 35(1):202-210.
doi: 10.11869/j.issn.100-8551.2021.01.0202 |
[27] |
NiuY F, Chai R S, Jin G L, et al. Responses of root architecture development to low phosphorus availability:a review. Annals of Botany, 2013, 112(2):391-408.
doi: 10.1093/aob/mcs285 |
[28] | 吴佳妮, 杨天志, 连加, 等. 聚苯乙烯纳米塑:(PSNPs)对大豆(Glycinemax)种子发芽和幼苗生长的影响. 环境科学学报, 2020, 40(12):4581-4589. |
[29] |
Sun H, Tao J, Liu S, et al. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. Journal Experimental Botany, 2014, 65(22):6735-6746.
doi: 10.1093/jxb/eru029 |
[30] | 陆长梅, 张超英, 温俊强, 等. 纳米材料促进大豆萌芽、生长的影响及其机理研究. 大豆科学, 2002(3):168-171,241. |
[31] | 李畅, 苏家乐, 刘晓青, 等. 干旱胁迫对鹿角杜鹃种子萌发和幼苗生理特性的影响. 西北植物学报, 2015, 35(7):1421-1427. |
[32] |
Mojde S, Zeinolabedin T S, Yahya E, et al. Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought. Plant Physiology and Biochemistry, 2017, 119:59-69.
doi: 10.1016/j.plaphy.2017.08.015 |
[33] | 邹京南, 曹亮, 王梦雪, 等. 外源褪黑素对干旱胁迫下大豆结荚期光合及生理的影响. 生态学杂志, 2019, 38(9):2709-2718. |
[1] | Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148. |
[2] | Tan Qinliang, Cheng Qin, Pan Chenglie, Zhu Pengjin, Li Jiahui, Song Qiqi, Nong Zemei, Zhou Quanguang, Pang Xinhua, Lü Ping. Effects of Drought Stress on Physiological Indexes of New Sugarcane Variety Guire 2 [J]. Crops, 2022, 38(3): 161-167. |
[3] | Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199. |
[4] | Lu Jun, Qian Yu, Yang Liu, Wang Yong, Chen Yulan. Effects of Storage Time on Seed Germination and Physiological Characteristics of Tobacco Variety Honghuadajinyuan [J]. Crops, 2022, 38(2): 211-214. |
[5] | Du Xin, Li Bo, Mao Luxiao, Chen Wei, Zhang Yuxian, Cao Liang. Effects of Melatonin on Yield and AsA-GSH Cycle in Soybean under Drought Stress [J]. Crops, 2022, 38(1): 174-178. |
[6] | Li An, Shu Jianhong, Liu Xiaoxia, Meng Zhengbing, Wang Xiaoli, Zhao Degang. Effects of Bacillus subtilis on Drought Resistance and Physiological Indexes of Maize Seeds under Drought Stress [J]. Crops, 2021, 37(6): 217-223. |
[7] | Chen Fang, Gu Xiaoping, Yu Fei, Hu Jiamin, Zuo Jin, Hu Xinxin, Liu Yupeng, Hu Feng. Response of Photosynthetic Physiological Characteristics of Pepper in Guizhou under Drought Stress [J]. Crops, 2021, 37(5): 160-165. |
[8] | Lü Wei, Ren Guoxiang, Han Junmei, Wen Fei, Wang Ruopeng, Liu Wenping. Effects of Drought Stress on Physiological and Biochemical Indexes of Sesame Seedlings [J]. Crops, 2021, 37(5): 172-175. |
[9] | Pei Zhichao, Zhou Jihua, Xu Xiangdong, Lan Hongliang, Wang Junying, Lang Shuwen, Zhang Weiqiang. Effects of Drought Treatment on Photosynthesis Rate, Antioxidant Properties of Leaves and Yield of Different Maize Varieties [J]. Crops, 2021, 37(5): 95-100. |
[10] | Yan Feng, Li Qingquan, Dong Yang, Ji Shengdong, Han Yehui, Yu Yunkai, Wang Lida, Zhao Suo. Effects of 60Co-γ Radiation on the Seed Germination and Seedling Growth of Broomcorn Millet [J]. Crops, 2021, 37(4): 202-205. |
[11] | Song Ruijiao, Feng Caijun, Qi Juncang. Effects of Hydrogen-Rich Water on Barley Seed Germination and Barley Seedling Biomass Distribution under Drought Stress [J]. Crops, 2021, 37(4): 206-211. |
[12] | Shen Jie, Wang Yuguo, Guo Pingyi, Yuan Xiangyang. Effects of Humic Acid on Ascorbate-Glutathione Cycle in the Leaves of Foxtail Millet Seedlings under Drought Stress [J]. Crops, 2021, 37(2): 173-177. |
[13] | Han Duohong, Wang Enjun, Zhang Yong, Wang Hongxia, Wang Yan, Wang Fu. Effects of Exogenous Spermidine and Glycine Betaine on Seed Germination and Physiological Characteristics of Isatis indigotica Fort. Seedlings under Drought Stress [J]. Crops, 2021, 37(1): 118-123. |
[14] | Deng Wanyue, Leng Qiuyan, Yang Zaijun, Yu Yan, Wu Yichao. Effects of Simulated Drought Stress on the Physiological Indexes and Contents of Active Components of Potted "Chuandanshen 1" [J]. Crops, 2021, 37(1): 74-81. |
[15] | Yang Juan, Jiang Yangming, Zhou Fang, Zhang Jun, Luo Haideng, Tian Shanjun. Effects of PEG Simulated Drought Stress on Seedling Morphology and Physiological Characteristics of Different Drought-Resistance Maize Varieties [J]. Crops, 2021, 37(1): 82-89. |
|