Crops ›› 2023, Vol. 39 ›› Issue (5): 98-103.doi: 10.16035/j.issn.1001-7283.2023.05.014
Previous Articles Next Articles
Yang Cheng1(), Zhang Deqi1(), Du Simeng1, Zhang Lijia2, Jin Haiyang1, Li Ying1, Shao Yunhui1, Wang Hanfang1, Fang Baoting1, Li Xiangdong1(), Liu Meijun2()
[1] | 杨程, 张德奇, 杜思梦, 等. 黑暗诱导衰老对不同年代冬小麦品种旗叶光系统Ⅱ功能的影响. 应用生态学报, 2018, 29(8):2525-2531. |
[2] |
Yang C, Zhang D, Li X, et al. Drought effects on photosynthetic performance of two wheat cultivars contrasting in drought. New Zealand Journal of Crop and Horticultural Science, 2021, 49(1):17-29.
doi: 10.1080/01140671.2020.1851264 |
[3] |
陈新宜, 宋宇航, 张孟寒, 等. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用. 作物学报, 2022, 48(2):478-487.
doi: 10.3724/SP.J.1006.2022.11026 |
[4] | 和娟, 唐燕, 李晓瑞, 等. 水分亏缺对小麦芒和旗叶光合特性及蔗糖、淀粉合成的影响. 干旱地区农业研究, 2021, 39(6):53-61,78. |
[5] | 孙爽, 杨晓光, 张镇涛, 等. 华北平原不同等级干旱对冬小麦产量的影响. 农业工程学报, 2021, 37(14):69-78. |
[6] | 胡阳阳, 卢红芳, 刘卫星, 等. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响. 作物学报, 2018, 44(4):591-600. |
[7] | 毛浩田, 陈梦莹, 吴楠, 等. 干旱胁迫对不同倍性小麦和八倍体小黑麦苗期光合能力与抗氧化系统的影响. 麦类作物学报, 2018, 38(10):1246-1254. |
[8] |
Luisa C S M, Barbara L, Adriana B, et al. Antioxidant system in Boea hygroscopica: Changes in response to desiccation and red ration. Phytochemistry, 1994, 35(3):561-565.
doi: 10.1016/S0031-9422(00)90561-2 |
[9] | 李鹏民, 高辉远,Reto J S. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31(6):559-566. |
[10] |
Rahma G A B C, Arafet M B, Walid D A B, et al. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea. Journal of Photochemistry and Photobiology,B:Biology, 2018, 183(6):275-287.
doi: 10.1016/j.jphotobiol.2018.04.047 |
[11] |
Yang C, Zhang Z, Gao H, et al. Mechanisms by which the infection of Sclerotinia sclerotiorum (Lib.) de Bary affects the photosynthetic performance in tobacco leaves. BMC Plant Biology, 2014, 14(1):240.
doi: 10.1186/s12870-014-0240-4 |
[12] |
Zhou R, Kan X, Chen J, et al. Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescenc, P700 and cyclic electron flow signals. Environmental and Experimental Botany, 2019, 158(2):51-62.
doi: 10.1016/j.envexpbot.2018.11.005 |
[13] |
Zeng F, Wang G, Liang Y, et al. Disentangling the photosynthesis performance in japonica rice during natural leaf senescence using OJIP fluorescence transient analysis. Functional Plant Biology, 2021, 48(2):206-217.
doi: 10.1071/FP20104 pmid: 33099327 |
[14] |
Jin L, Che X, Zhang Z, et al. The mechanisms by which phenanthrene affects the photosynthetic apparatus of cucumber leaves. Chemosphere, 2017, 168(2):1498-1505.
doi: 10.1016/j.chemosphere.2016.12.002 |
[15] |
Badr A, Brüggemann W. Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. Photosynthetica. 2020, 58:638-645.
doi: 10.32615/ps.2020.014 |
[16] |
Chen S, Yang J, Zhang M, et al. Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. Environmental and Experimental Botany, 2016, 122(2):126-140.
doi: 10.1016/j.envexpbot.2015.09.011 |
[17] |
Li P, Ma F. Different effects of light irradiation on the photosynthetic electron transport chain during apple tree leaf dehydration. Plant Physiology and Biochemistry, 2012, 55:16-22.
doi: 10.1016/j.plaphy.2012.03.007 pmid: 22484842 |
[18] |
Mihaljevi I, Lepedu H, Imi D, et al. Photochemical efficiency of photosystem II in two apple cultivars affected by elevated temperature and excess light in vivo. South African Journal of Botany, 2020, 130:316-326.
doi: 10.1016/j.sajb.2020.01.017 |
[19] | Mathur S, Jajoo A, Mehta P, et al. Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology, 2010, 13(1):1-6. |
[20] | 金立桥, 车兴凯, 张子山, 等. 高温、强光下黄瓜叶片PSII供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系. 植物生理学报, 2015, 51(6):969-976. |
|