Crops ›› 2024, Vol. 40 ›› Issue (3): 1-7.doi: 10.16035/j.issn.1001-7283.2024.03.001

    Next Articles

Advances in Research and Application of Rice Bacterial Blight Resistance Genes

Chen Luo1(), Zhu Wen1, Li Wenhui2, Zhao Junliang2, Zhou Lingyan1(), Yang Wu2()   

  1. 1College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225,Guangdong, China
    2Rice Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of New Technology in Rice Breeding / Guangdong Rice Engineering Laboratory / Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, Guangdong, China
  • Received:2023-03-09 Revised:2023-05-01 Online:2024-06-15 Published:2024-06-18

Abstract:

Rice is one of the most important food crops. Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the oldest and most serious bacterial diseases that endangers the safe production of rice. The Xoo, which has the characteristics of strong mutability, rapid spread and wide distribution. It is an effective way to control bacterial blight by discovering and identifying resistance genes and breeding resistant varieties with them. Up to now, 49 resistance genes related to rice bacterial blight have been identified, among which 42 resistance genes have been located, including 28 dominant genes and 14 recessive genes. 17 resistance genes have been successfully cloned. The expression of resistance genes or interactions between resistance genes and proteins expressed by pathogen is the key to induce resistance. In this paper, the research and breeding application progress of rice bacterial blight resistance genes were reviewed and prospects. The aim of this paper is to provide valuable information for the further study and molecular breeding of rice bacterial blight.

Key words: Rice, Bacterial blight, Resistance gene, Molecular breeding

Table 1

The cloned and functionally studied resistance genes to bacterial blight"

基因
Gene
显/隐性
Dominance(+)/recessive(-)
染色体
Chromosome
基因座
Gene locus
功能特点
Function characteristic
参考文献
Reference
Xa1
+
4
LOC_Os04g53120
Xa1是NBS-LRR类成员,在病原体和伤口接种下被诱导表达 [6]
Xa2 + 4 LOC_Os04g53120 Xa2Xa14Xa31(t)Xa45(t)均是Xa1的等位基因,能被任一典型结构的TALE激活抗性(ETI)并被iTALE所抑制(ETS)

[5]



Xa14 + 4 LOC_Os04g53120
Xa31(t) + 4 LOC_Os04g53120
Xa45(t) + 4 LOC_Os04g53120
Xa3/Xa26

+

11

LOC_Os11g47000

Xa3/Xa26是组成型表达基因,编码LRR受体激酶蛋白,抗病Xa3/Xa26和感病xa3/xa26蛋白序列的差异导致了抗性的差异 [7]

Xa4
+
11
LOC_Os11g47140
Xa4编码细胞壁相关激酶,通过加强细胞壁增加机械强度并降低植株高度 [8]
xa5

-

5

LOC_Os05g01710

xa5编码一个真核生物转录因子ⅡA伽马亚基(TFⅡAγ),抗病xa5与感病Xa5的蛋白序列存在1个氨基酸变异是导致抗性差异的原因 [9]

Xa7

+

6

日本晴中缺失该基因位点,镇恢084的6号染色体上M10标记左侧28 kb内的G1基因即Xa7 Xa7受AvrXa7和PthXo3效应子诱导表达,进而产生抗性
[10]

Xa10

+

11

LOC_Os11g37570

Xa10启动子区域含有特异激活Xa10表达的AvrXa10结合元件,Xa10表达导致细胞程序性死亡 [11]

xa13
-
8
LOC_Os08g42350
隐性xa13的启动子突变导致宿主与病原体相互作用时该基因表达下调,进而产生抗性 [12]
Xa21
+
11
LOC_Os11g35500
Xa21编码类受体激酶蛋白,与激活因子AvrXa21共同调控白叶枯病的抗性 [13]
Xa23
+
11
LOC_Os11g37620
Xa23启动子区含有AvrXa23结合元件,能够特异激活Xa23的表达,进而引发超敏反应 [14]
xa25
-
12
LOC_Os12g29220
xa25编码MtN3/saliva家族的一员,对菲律宾小种PXO339表现专抗 [15]
Xa27 + 6 LOC_Os06g39810 Xa27表达依赖于携带avrXa27的病菌侵染 [16]
xa41(t)
-
11
LOC_Os11g31190
xa41(t)启动子区18个碱基的缺失与抗性密切相关 [17]
Xa47(t)a
+
11
LOC_Os11g46200
Xa47(t)aXa47(t)的A基因型,编码NLR类蛋白,受病原菌诱导表达 [18]

Table 2

The mapped resistance genes to bacterial blight"

基因
Gene
显/隐性
Dominance(+)/recessive(-)
染色体
Chromosome
连锁标记或位置
Linked marker or position
候选基因
Candidate gene
参考文献
Reference
xa8
-
7
RM21044 (7.0 cM), RM21045 (9.9 cM)
LOC_Os07g07400, LOC_Os07g07410,
LOC_Os07g07420
[23]
Xa11 + 3 RM347 (2.0 cM), KUX11 (1.0 cM) 9个BAC克隆 [24]
Xa12 + 4 [25]
xa19 - 7 RM8262-RM6728 (0.8 cM) [26]
xa20 - 3 KIC3-33.88 (33.0 Mb), KIC3-34.06 (33.2 Mb) 34个基因 [27]
Xa22(t) + 11 R1506-M3H8 (100 kb) [28]
xa24(t) - 2 RM14222-RM14226 (0.07 cM) 16个基因 [29]
Xa25(t) + 12 NBS109 (2.5 cM), G1314 (7.3 cM) [30]
Xa29(t) + 1 C904-R596 (1.3 cM) [31]
Xa30(t) + 11 RM1341 (11.4 cM) [32]
Xa32(t) + 11 ZCK24 (0.5 cM), RM6293 (1.5 cM) [33]
xa32(t) - 12 RM20A (1.7 cM) [34]
Xa33 + 7 RMWR7.1 (0.9 cM), RMWR7.6 (1.2 cM) 8个基因 [35]
xa33(t) - 6 RM20593 [36]
xa34(t) - 1 RM10929-BGID25 (204 kb) 21个开放阅读框 [37]
Xa35(t) + 11 RM7654 (1.1 cM), RM6293 ( 0.7 cM) [38]
Xa36(t) + 11 RM224-RM2136 (4.5 cM) [39]
Xa38
+
4
Oso4g53050-1
LOC_Os04g53030, LOC_Os04g53050,
LOC_Os04g53060
[40]
Xa39 + 11 RM26985-DM13 (0.51 cM) LOC_Os11g37759 [41]
Xa40 + 11 RM27320-ID55.WA18-5 (80 kb) LOC_Os11g46900 [42]
xa42

-

3

KGC3_16.342-KGC3_16.399 (57 kb)

LOC_Os03g28389, LOC_Os03g28400,
LOC_Os03g28420, LOC_Os03g28410,
LOC_Os03g28910
[43]

Xa43(t) + 11 IBb27os11_14-S_BB11.ssr_9 (119 kb) LOC_Os11g46060, LOC_Os11g46100 [19]
xa44(t) - 11 #46. Os11g0689400-#5. RM27318 (120 kb) Os11g0690066, Os11g0690466 [20]
xa-45(t) - 8 IRGSP-1.0 (80 kb) 9个基因 [21]
Xa46(t) + 11 RM26981-RM26984 (65.34 kb) LOC_Os11g37540, LOC_Os11g37550 [22]
[1] Rajarajeswari N V L, Muralidharan K. Assessments of farm yield and district production loss from bacterial leaf blight epidemics in rice. Crop Protection, 2006, 25(3):244-252.
[2] 徐羡明, 曾列先, 伍尚忠. 广东野生稻种质资源对白叶枯病的抗性鉴定. 广东农业科学, 1986(5):29-31.
[3] Ogawa T. Methods and strategy for monitoring race distribution and identification of resistance genes to bacterial leaf blight (Xanthomonas campestris pv. oryzae) in rice. Jarq-Japan Agricultural Research Quarterly, 1993, 27(2):71-80.
[4] Xing J, Zhang D, Yin F, et al. Identification and fine-mapping of a new bacterial blight resistance gene, Xa47(t), in G252, an introgression line of Yuanjiang common wild rice (Oryza rufipogon). Plant Disease, 2021, 105(12):4106-4112.
[5] Ji C H, Ji Z Y, Liu B, et al. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Communications, 2020, 1(4):10087.
[6] Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4):1663-1668.
[7] Cao Y L, Duan L, Li H J, et al. Functional analysis of Xa3/Xa26 family members in rice resistance to Xanthomonasoryzae pv. oryzae. Theoretical and Applied Genetics, 2007, 115(7):887-895.
[8] Hu K M, Cao J B, Zhang J, et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nature Plants, 2017, 3:17009.
doi: 10.1038/nplants.2017.9 pmid: 28211849
[9] Iyer A S, Mccouch S R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Molecular Plant- Microbe Interactions, 2004, 17(12):1348-1354.
[10] Chen X F, Liu P C, Mei L, et al. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Communications, 2021, 2(3):100143.
[11] Tian D S, Wang J X, Zeng X, et al. The rice TAL effector- dependent resistance protein Xa10triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell, 2014, 26(1):497-515.
[12] Chu Z H, Yuan M, Yao J L, et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes & Development, 2006, 20(10):1250-1255.
[13] Andaya C B, Ronald P C. A catalytically impaired mutant of the rice Xa21 receptor kinase confers partial resistance to Xanthomonas oryzae pv.oryzae. Physiological and Molecular Plant Pathology, 2003, 62(4):203-208.
[14] Wang C L, Zhang X P, Fan Y L, et al. Xa23 is an executor R protein and confers broad-spectrum disease resistance in rice. Molecular Plant, 2015, 8(2):290-302.
[15] Liu Q, Yuan M, Zhou Y, et al. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell and Environment, 2011, 34(11):1958-1969.
[16] Gu K Y, Yang B, Tian D S, et al. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 2005, 435(7045):1122-1125.
[17] Hutin M, Sabot F, Ghesquière A, et al. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. The Plant Journal, 2015, 84(4):694-703.
[18] 卢源达, 张敦宇, 钟巧芳, 等. 水稻抗白叶枯病基因Xa47(t)a的克隆及生物信息学分析. 分子植物育种. (2023-02-10) [2023- 03-08]. https://kns.cnki.net/kcms/detail//46.1068.S.20230209.1838.016.html.
[19] Kim S M, Reinke R F, Sundaram R M. A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population. PLoS ONE, 2019, 14(2):e0211775
[20] Kim S M. Identification of novel recessive gene Xa44(t) conferring resistance to bacterial blight races in rice by QTL linkage analysis using an SNP chip. Theoretical and Applied Genetics, 2018, 131(12):2733-2743.
[21] Neelam K, Mahajan R, Gupta V, et al. High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa. Theoretical and Applied Genetics, 2020, 133:689-705.
[22] Chen S, Wang C, Yang J, et al. Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120. Scientific Reports, 2020, 10(1):12642.
[23] Vikal Y, Chawla H, Sharma R, et al. Mapping of bacterial blight resistance gene xa8 in rice (Oryza sativa L.). Indian Journal of Genetics & Plant Breeding, 2014, 74(4):589-595.
[24] Goto T, Matsumoto T, Furuya N, et al. Mapping of bacterial blight resistance gene Xa11 on rice chromosome 3. Jarq-Japan Agricultural Research Quarterly, 2009, 43(3):221-225.
[25] 鲍思元, 谭明谱, 林兴华. 水稻抗白叶枯病基因Xa12区间连锁图的构建. 亚热带植物科学, 2006, 35(3):1-4.
[26] Taura S, Ichitani K. Chromosomal location of xa19, a broad- spectrum rice bacterial blight-resistant gene from XM5, a mutant line from IR24. Plants, 2023, 12(3):602.
[27] Msami J A, Kawaguchi Y, Ichitani K, et al. Linkage analysis of rice bacterial blight resistance gene xa20 in XM6, a mutant line from IR24. Breeding Science, 2021, 71(2):144-154.
[28] Wang C, Tan M P, Xu X, et al. Localizing the bacterial blight resistance gene, Xa22(t), to a 100-kilobase bacterial artificial chromosome. Phytopathology, 2003, 93(10):1258-1262.
[29] Wu X M, Li X H, Xu C G, et al. Fine genetic mapping of xa24, a recessive gene for resistance against Xanthomonas oryzae pv. oryzae in rice. Theoretical and Applied Genetics, 2008, 118(1):185-191.
[30] Chen H L, Wang S P, Zhang Q F. New gene for bacterial blight resistance in rice located on chromosome 12 identified from minghui 63, an elite restorer line. Phytopathology, 2002, 92(7):750-754.
doi: 10.1094/PHYTO.2002.92.7.750 pmid: 18943271
[31] 谭光轩, 任翔, 翁清妹, 等. 药用野生稻转育后代一个抗白叶枯病新基因的定位. 遗传学报, 2004, 31(7):724-729.
[32] 金旭炜, 王春连, 杨清, 等. 水稻抗白叶枯病近等基因系CBB30的培育及Xa30(t)的初步定位. 中国农业科学, 2007, 40(6):1094-1100.
[33] 郑崇珂, 王春连, 于元杰, 等. 水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位. 作物学报, 2009, 35(7):1173-1180.
doi: 10.3724/SP.J.1006.2009.01173
[34] Ruan H H, Yan C Q, An D R, et al. Identifying and mapping new gene xa32(t) for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) from Oryza meyeriana L.. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(6):170-174.
[35] Kumar P N, Sujatha K, Laha G S, et al. Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv. oryzae. Phytopathology, 2012, 102(2):222-228.
[36] Korinsak S, Sriprakhon S C, Sirithanya P, et al. Identification of microsatellite markers (SSR) linked to a new bacterial blight resistance gene xa33(t) in rice cultivar ‘Ba7’. Maejo International Journal of Science and Technology, 2009, 3(2):235-247.
[37] Chen S, Liu X Q, Zeng L X, et al. Genetic analysis and molecular mapping of a novel recessive gene xa34(t) for resistance against Xanthomonas oryzae pv.oryzae. Theoretical and Applied Genetics, 2011, 122(7):1331-1338.
[38] 郭嗣斌, 张端品, 林兴华. 小粒野生稻抗白叶枯病新基因的鉴定与初步定位. 中国农业科学, 2010, 43(13):2611-2618.
doi: 10.3864/j.issn.0578-1752.2010.13.001
[39] 苗丽丽, 王春连, 郑崇珂, 等. 水稻抗白叶枯病新基因的初步定位. 中国农业科学, 2010, 43(15):3051-3058.
[40] Bhasin H, Bhatia D, Raghuvanshi S, et al. New PCR-based sequence-tagged site marker for bacterial blight resistance gene Xa38 of rice. Molecular Breeding, 2012, 30(1):607-611.
[41] Zhang F, Zhuo D L, Zhang F, et al. Xa39,a novel dominant gene conferring broad-spectrum resistance to Xanthomonas oryzae pv. oryzae in rice. Plant Pathology, 2015, 64(3):568-575.
[42] Kim S M, Suh J P, Qin Y, et al. Identification and fine-mapping of a new resistance gene, Xa40, conferring resistance to bacterial blight races in rice (Oryza sativa L.). Theoretical & Applied Genetics, 2015, 128(10):1-11.
[43] Busungu C, Taura S, Sakagami J I, et al. High-resolution mapping and characterization of xa42, a resistance gene against multiple Xanthomonas oryzae pv. oryzae races in rice (Oryza sativa L.). Breeding Science, 2018, 68(2):188-199.
[44] 张剑霞, 杨子贤, 姜恭好, 等. 利用DH群体定位白叶枯病抗性QTL. 分子植物育种, 2009, 7(3):471-477.
[45] 薛皦, 卢东柏, 刘维, 等. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位. 作物学报, 2022, 48(9):2210-2220.
doi: 10.3724/SP.J.1006.2022.12037
[46] Lu L J, Li L Q, Wang C C, et al. Identification of quantitative trait loci associated with resistance to Xanthomonas oryzae pv. oryzae pathotypes prevalent in South China. The Crop Journal, 2022, 10(2):498-507.
[47] Shu X Y, Wang A J, Jiang B, et al. Genome-wide association study and transcriptome analysis discover new genes for bacterial leaf blight resistance in rice (Oryza sativa L.). BMC Plant Biology, 2021, 21(1):255-267.
[48] Yang W, Zhou J L, Zhang S H, et al. Genome-wide association mapping and gene expression analysis reveal the negative role of OsMYB21 in regulating bacterial blight resistance in rice. Rice, 2021, 14(1):58.
doi: 10.1186/s12284-021-00501-z pmid: 34185169
[49] Huang B, Xu J Y, Hou M S, et al. Introgression of bacterial blight resistance genes Xa7, Xa21, Xa22 and Xa23 into hybrid rice restorer lines by molecular marker-assisted selection. Euphytica, 2012, 187(3):449-459.
[50] Kumar V A, Balachiranjeevi C H, Naik S B, et al. Marker- assisted introgression of the major bacterial blight resistance gene, Xa21 and blast resistance gene, pi54 into RPHR-1005, the restorer line of the popular rice hybrid, DRRH3. Journal of Plant Biochemistry and Biotechnology, 2016, 25(4):400-409.
[51] Xu Z Y, Xu X M, Gong Q, et al. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Molecular Plant, 2019, 12(11):1434-1446.
doi: S1674-2052(19)30289-8 pmid: 31493565
[52] Zhou Y B, Xu S C, Jiang N, et al. Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/Cas9. Plant Biotechnology Journal, 2021, 20(5):876-885.
doi: 10.1111/pbi.13766 pmid: 34890109
[53] 陈深, 汪聪颖, 苏菁, 等. 华南水稻白叶枯病菌致病性分化检测与分析. 植物保护学报, 2017, 44(2):217-222.
[54] Gu K Y, Tian D S, Qiu C X, et al. Transcription activator-like type III effector AvrXa 27 depends on OsTFIIAgamma5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv.oryzae. Molecular Plant Pathology, 2009, 10(6):829-835.
[55] Yuan M, Ke Y G, Huang R Y, et al. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife, 2016, 5:e19605
[56] 李舟, 杨雅云, 戴陆园, 等. 水稻白叶枯病抗性基因和相关因子研究利用进展. 中国农学通报, 2022, 38(30):91-99.
doi: 10.11924/j.issn.1000-6850.casb2021-0941
[1] Jiang Min, He Aibin, Sun Huijuan, Man Jianguo, Nie Lixiao. Effects of Nitrogen Management on Growth and Development, Soil Physical and Chemical Properties of Late-Season Rice under Different Straw Retention Treatments of Early-Season Rice in Direct Seeding Mode of Double-Season Rice [J]. Crops, 2024, 40(3): 100-108.
[2] Quan Chengzhe, Li Shufang, Li Henan, Yu Wei, Jin Jinghua. Genetic Diversity Study of Phenotypic Traits of 73 Rice Varieties by Approved in Jinlin Province [J]. Crops, 2024, 40(3): 64-75.
[3] Wang Han, Zheng Dechao, Tian Qinqin, Wu Xiaojing, Zhou Wenxin, Yi Zhenxie. Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice [J]. Crops, 2024, 40(2): 105-112.
[4] Xiao Min, Guo Lang, Cui Can, Cheng Zhouqi, Liu Yuwu, Zhuo Le, Wu Si, Yi Zhenxie. Effects of Phosphate Fertilizer Management on Yield Components and Nutrient Uptake and Utilization in Mechanical Transplanting Double-Cropping Rice [J]. Crops, 2024, 40(2): 178-188.
[5] Liu Fanchao, Fang Shumei, Wang Qingyan, Wang Hanxin, Niu Juanjuan, Liang Xilong. Effects of Different Concentrations of Exogenous Amino Acids on Growth and Related Physiological Indicators of Rice Seedlings [J]. Crops, 2024, 40(2): 71-79.
[6] Qin Birong, You Saiya, Chen Shurong, Zhu Lianfeng, Kong Yali, Zhu Chunquan, Tian Wenhao, Zhang Junhua, Jin Qianyu, Cao Xiaochuang, Liu Li. Effects of the Different Nitrogen Levels on Yield, Nitrogen Utilization Efficiency and the Nitrogen Balance of Double-Cropping Rice in Paddy Field [J]. Crops, 2024, 40(2): 89-96.
[7] Du Ming, Wang Ahong, Feng Qi, Fang Yu. Development and Challenge of Crop Breeding by Design System in China [J]. Crops, 2024, 40(1): 1-7.
[8] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[9] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[10] Wang Xiaolei, Zhang Yunhe, Mu Jinmeng, Gao Dapeng, Geng Yanqiu, Cao Yiwen, Lu Fen, Guan Zhengwen, Shao Xiwen, Guo Liying. Effects of Soda and Saline-Alkali Stress on Photosynthetic Characteristics and Yield of Rice [J]. Crops, 2024, 40(1): 193-203.
[11] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
[12] Liu Dan, Wang Jiayu, Feng Zhangli, Feng Bo, Chen Wenfu. Analysis on Genetic Diversity and Population Structure for Japonica Rice Varieties in Liaoning Province [J]. Crops, 2024, 40(1): 40-47.
[13] Xie Keran, Gao Ti, Cui Kehui. Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature [J]. Crops, 2024, 40(1): 8-15.
[14] Xie Hao, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Yang Jianchang, Gu Junfei. Analysis of Nitrogen Use Efficiency of Base Fertilizer of Rice under Different Crop Management Practices by Using 15N Labeling [J]. Crops, 2024, 40(1): 90-96.
[15] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!