Crops ›› 2025, Vol. 41 ›› Issue (2): 180-188.doi: 10.16035/j.issn.1001-7283.2025.02.025

Previous Articles     Next Articles

Effects of Different Crops Planting on Heavy Metals in Soils and Crops

Huang Chengjian1(), Li Xiang1, Liu Xiaokang2, Pan Tingjie1, Lei Ning1, Luo Fang2, Zhao Siyi3   

  1. 1Modern Agricultural Institution, Dazhou Vocational and Technical College, Dazhou 635000, Sichuan, China
    2Dazhou Agricultural Environmental Protection Monitoring Station, Dazhou 635000, Sichuan, China
    3Dazhou Academy of Agricultural Sciences, Dazhou 635000, Sichuan, China
  • Received:2023-09-10 Revised:2023-11-27 Online:2025-04-15 Published:2025-04-16

Abstract:

Taking ramie (Boehmeria nivea) fields, intercropped and relay-cropped drylands, paddy fields, and planted with crops as the research objects, the content of heavy metals in soil and crops were measured, heavy metal pollution risk and the influencing factors were analyzed, and the heavy metal enrichment capacity of ramie, food and oil crops to soil heavy metals were evaluated. The results showed that the content of soil Cd in ramie fields was significantly lower than that in paddy fields, but greater than that in relay-cropped drylands, no significant difference was detected for the contents of Pb, Cr, Hg and As among crop cultivated fields (P < 0.05). In addition, Cd content in a few sites in ramie fields and intercropping and relay-cropped drylands other than in the paddy fields exceeded the risk screening value of agricultural land soil. Moreover, the contents of Pb, Cr and Hg were significantly greater in ramie roots than that in rice grains, maize grains, potato tubers and rapeseeds. However, the contents of Cd and As were significantly lower in ramie roots than that in rice grains. Cd content in a few rice grain samples exceeded the limit of pollutant in food, whereas that in other food and oil crops did not exceed the standard line of pollutants in food. The acid soil conditions, the difference in the content of soil organic matter due to differently cultivated crops, and the overdose of phosphorus fertilizers were the main factors led to the excessive Cd in ramie fields and intercropping and relay-cropped drylands. In conclusion, the comprehensive pollution of heavy metals in soils, food and oil crops in three types of cultivated field was all in safety and vigilance levels. The enrichment capacity of ramie to heavy metal Cd and As were significantly lower than that of rice grains, but to heavy metal Pb, Cr and Hg were higher than that of food and oil crops. Thus, the phytoremediation effect of ramie on heavy metal pollution soil in ordinary farmlands outside mining areas was better than that of food and oil crops. However, the phytoremediation period may to be extended when using ramie to deal with Cd and As pollution in paddy fields.

Key words: Ramie, Food and oil crops, Soil, Heavy metal pollution, Enrichment, Soil physical and chemical properties

Table 1

Heavy metal content and K of ramie soil and roots in mining area (or chemical plant)"

序号
Number
矿区
(或化工厂)
Mining area (or
chemical plant)
土壤重金属含量
Content of heavy metals
in soils (mg/kg)
苎麻根重金属含量
Content of heavy metals
in ramie roots (mg/kg)
K 参考文献
Reference
Cd Pb Cr Hg As Cd Pb Cr Hg As Cd Pb Cr Hg As
1

湖南浏阳七
宝山矿区
A农田
7.70

694.22







8.1600

121.0000







1.0597

0.1743







[13]

2

湖南浏阳七
宝山矿区
B农田
8.52

956.60







7.6000~
9.1700
12.1200~
120.5200






0.8920~
1.0763
0.0127~
0.1260






[13]

3
江西德兴
铜矿区
0.51
9.36



0.3500
2.2700



0.6863
0.2425



[11]
4
湖南冷水
江锑矿区
0.87~
86.69
32.20~
219.90


10.70~
310.00
1.3800~
2.5900
8.7000~
8.4000


0.9000~
3.5200
0.0299~
1.5862
0.0382~
0.2702


0.0114~
0.0841
[8]
5
浙江嘉兴
南湖区



0.3200




0.0420




0.1313

[10]

Table 2

Statistics of heavy metal content in soils of different crop planting fields"

作物种植地
Crop planting fields
土壤重金属平均含量
Average content of soil heavy metals (mg/kg)
农用地土壤污染风险筛选值超标率
Exceeding proportion to the risk screening
value of agricultural land soil (%)
Cd Pb Cr Hg As Cd Pb Cr Hg As
苎麻地Ramie field 0.27±0.01b 24.38±0.53a 70.86±1.74a 0.0403±0.0048a 3.11±0.33a 18.75 0 0 0 0
间套作旱地
Intercropping and relay-cropped dryland
0.25±0.02c
23.38±0.80a
68.43±2.03a
0.0342±0.0058a
2.21±0.18a
25.00
0
0
0
0
水稻田Paddy field 0.31±0.01a 24.23±0.40a 69.50±1.89a 0.0459±0.0025a 2.47±0.09a 0.00 0 0 0 0

Table 3

Single-factor pollution index of soil heavy metals in different crop planting fields"

作物种植地
Crop planting field
单因子污染指数Single-factor pollution index 污染等级Pollution level (%)
PCd PPb PCr PHg PAs PCd≤1.0 1.0<PCd≤2.0 PPb≤1.0 PCr≤1.0 PHg≤1.0 PAs≤1.0
苎麻地Ramie field 0.86±0.03a 0.35±0.01a 0.45±0.02a 0.0294±0.0041b 0.08±0.01ab 81.25 18.75 100 100 100 100
间套作旱地
Intercropping and relay-cropped dryland
0.78±0.09a 0.28±0.04b 0.41±0.03a 0.0234±0.0051b 0.06±0.01b 75.00 25.00 100 100 100 100
水稻田Paddy field 0.58±0.03b 0.19±0.01c 0.24±0.00b 0.0803±0.0060a 0.10±0.00a 100.00 0.00 100 100 100 100

Table 4

Nemerow comprehensive pollution index under different crop planting fields"

作物种植地
Crop planting
field
PN 污染等级
Pollution level (%)
范围
Range
平均值
Average
PN≤0.7 0.7<PN≤1
苎麻地Ramie field 0.54~0.79 0.66±0.02a 62.50 37.50
间套作旱地
Intercropping and relay-
cropped dryland
0.25~0.78
0.58±0.07a
62.50
37.50
水稻田Paddy field 0.36~0.55 0.44±0.02b 100.00 0.00

Table 5

The contents of heavy metals in different crops"

作物器官
Crop organ
平均含量Average content (mg/kg) 超标率Exceeding proportion (%)
Cd Pb Cr Hg As Cd Pb Cr Hg As
苎麻根Ramie root 0.0063±0.0010b 0.1023±0.0108a 0.1208±0.0184a 0.0052±0.0007 0.0435±0.0043b / / / / /
玉米籽粒Maize grain 0.0141±0.0051b 0.0315±0.0039bc 0.1070±0.0080a ND 0.0035±0.0004d 0.00 0 0 0 0
马铃薯块茎Potato tuber 0.0203±0.0036b 0.0092±0.0007c 0.0107±0.0027b ND 0.0019±0.0002d 0.00 0 0 0 0
油菜籽Rapeseed 0.0293±0.0270b 0.0588±0.0129b 0.0975±0.0202a ND 0.0247±0.0074c 0.00 0 0 0 0
稻米Rice grain 0.1732±0.0363a 0.0266±0.0072bc 0.0582±0.0074ab ND 0.0678±0.0044a 30.00 0 0 0 0

Table 6

Single-factor pollution index and Nemerow comprehensive pollution index of heavy metals of rice grains %"

重金属
Heavy metal
Pi 污染等级Pollution level PN 污染等级Pollution level
Pi≤1.0 1.0<Pi≤2.0 PN≤0.7 0.7<PN≤1 1<PN≤2
Cd 0.15~1.90 0.86±0.18a 70.00 30.00 0.25~1.38 0.65±0.12 60.00 30.00 10.00
Pb 0.01~0.31 0.13±0.04b 100.00 0.00
Cr 0.04~0.10 0.06±0.01b 100.00 0.00
As 0.21~0.50 0.33±0.03b 100.00 0.00

Table 7

The biological enrichment coefficients (K) of crops to soil heavy metals"

作物器官Crop organ Cd Pb Cr Hg As
苎麻根Ramie root 0.0238±0.0040b 0.0042±0.0004a 0.0017±0.0003a 0.1525±0.0275 0.0161±0.0021b
玉米籽粒Maize grain 0.0605±0.0241b 0.0014±0.0002bc 0.0016±0.0001a 0.0017±0.0003c
马铃薯块茎Potato tuber 0.0728±0.0108b 0.0004±0.0000c 0.0002±0.0000b 0.0010±0.0002c
油菜籽Rapeseed 0.1231±0.0231b 0.0026±0.0007b 0.0014±0.0003a 0.0095±0.0031bc
稻米Rice grain 0.5703±0.1310a 0.0011±0.0003bc 0.0009±0.0001ab 0.0280±0.0030a

Table 8

Heavy metal content and K of ramie soil and ramie root in non-mining area"

非矿区
Non-mining area
土壤重金属含量
Content of heavy metals in soil (mg/kg)
苎麻根重金属含量
Content of heavy metals in ramie roots (mg/kg)
K
Cd Pb Cr Hg As Cd Pb Cr Hg As Cd Pb Cr Hg As
苎麻地Ramie fields 0.27 24.38 70.86 0.0403 3.11 0.0063 0.1023 0.1208 0.0052 0.0435 0.0238 0.0042 0.0017 0.1525 0.0161

Table 9

Soil properties in different crop planting fields"

作物种植地
Crop planting fields
pH 有机质
Organic matter
(g/kg)
全氮
Total nitrogen
(g/kg)
碱解氮
Available nitrogen
(mg/kg)
有效磷
Available
phosphorus (mg/kg)
速效钾
Available
potassium (mg/kg)
苎麻地Ramie fields 5.23±0.22b 20.79±1.46b 1.07±0.09a 118.00±16.73a 51.94±11.56a 119.81±27.45a
间套作旱地Intercropping and relay-cropped drylands 5.82±0.44ab 14.54±1.62c 0.92±0.12a 84.50±12.37a 25.94±7.30ab 93.38±21.23b
水稻田Paddy fields 6.62±0.19a 27.18±1.73a 1.24±0.09a 87.11±8.36a 5.02±1.23b 98.11±15.05b

Table 10

Correlation analysis of soil heavy metals and soil physical and chemical properties"

指标Index Pb Cd Cr Hg As pH OM TN AN AP AK
Pb 1.000 0.482** 0.614** 0.183 0.311 0.065 0.477** 0.474** 0.028 -0.169 0.327
Cd 1.000 0.380* 0.186 0.279 0.376* 0.536** 0.531** 0.088 -0.342 0.227
Cr 1.000 -0.130 0.088 0.288 0.203 0.147 -0.070 -0.246 0.018
Hg 1.000 -0.029 -0.278 0.396* 0.432* 0.193 0.209 0.253
As 1.000 -0.250 0.178 0.228 0.257 0.031 0.193
[1] 尚二萍, 许尔琪, 张红旗, 等. 中国粮食主产区耕地土壤重金属时空变化与污染源分析. 环境科学, 2018, 39(10):4670-4683.
[2] 李鹏, 张惠娟, 徐莉, 等. 麦玉轮作区农田土壤重金属调查及评价. 农业环境科学学报, 2022, 41(1):46-54.
[3] 马成卫, 孟建军, 上官宇先, 等. 四川盆地西北部农田土壤―玉米作物重金属富集及相关性评价. 农业研究与应用, 2022, 35(3):59-67.
[4] 刘文慧. 安徽某地农田土壤重金属生态风险评价. 合肥:合肥工业大学, 2020.
[5] 王罕, 郑德超, 田琴琴, 等. 收获时期对早稻产量与镉积累分配特性的影响. 作物杂志, 2024(2):105-112.
[6] 郝社锋, 任静华, 范健, 等. 江苏某市水稻籽粒重金属富集特征及健康风险评价. 环境污染与防治, 2021, 43(2):217-222,228.
[7] 方慧, 柳小兰, 颜秋晓, 等. 贵州油菜各器官在不同生育时期对土壤重金属的富集. 北方园艺, 2018(5):111-117.
[8] 佘玮, 揭雨成, 邢虎成, 等. 湖南冷水江锑矿区苎麻对重金属的吸收和富集特性. 农业环境科学学报, 2010, 29(1):91-96.
[9] 佘玮, 揭雨成, 邢虎成, 等. 湖南石门、冷水江、浏阳3个矿区的苎麻重金属含量及累积特征. 生态学报, 2011, 31(3):874-881.
[10] 庄胜利. 汞污染农田土壤强化植物修复的初步研究. 上海: 上海师范大学, 2018.
[11] 简敏菲, 杨叶萍, 余厚平, 等. 德兴铜矿区优势物种苎麻(Boehmeria nivea)对重金属的富集与积累特性. 生态与农村环境学报, 2016, 32(3):486-491.
[12] 项雅岭, 林匡飞, 胡球兰, 等. 苎麻吸镉特性及镉污染农田的改良. 中国麻作, 1994, 16(2):39-42.
[13] Wang Y, Zhang X, Jie Y C, et al. In-situ elimination effect on heavy metals in contaminated soil from the mining area by ramie. Agricultural Science and Technology, 2012, 13(2):375-379.
[14] 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行):GB 15618-2018. 北京: 中国标准出版社, 2018.
[15] 国家食品药品监督管理总局. 食品安全国家标准食品中污染物限量:GB 2762-2017. 北京: 中国标准出版社, 2017.
[16] 中华人民共和国农业部.土壤pH的测定:NY/T 1377-2007. 北京: 中国标准出版社, 2007.
[17] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000.
[18] 中华人民共和国农业部.绿色食品油菜籽:NY/T 2982-2016. 北京: 中国标准出版社, 2016.
[19] Nemerow N L. Stream,lake,estuary,and ocean pollution. New York: Van Nostrand Reinhold Publishing Co, 1985.
[20] 陈怀满. 土壤―植物系统中的重金属污染. 北京: 科学出版社, 1996.
[21] 李志琦, 彭清, 王洋, 等. 重庆市江津区高粱产业园土壤肥力调查与评价. 南方农业, 2022, 16(3):1-11.
[22] 张翔. 苎麻野生种质资源重金属镉耐性和富集性研究. 长沙:湖南农业大学, 2016.
[23] 杨忠芳, 陈岳龙, 钱鑂, 等. 土壤pH对Cd存在形态影响的模拟实验研究. 地学前缘, 2005, 12(1):252-260.
[24] 潘胜强, 王铎, 吴山, 等. 土壤理化性质对重金属污染土壤改良的影响分析. 环境工程, 2014(32):600-603.
[25] Covelo E F, Vega F A, Andrade M L. Heavy metal absorption and desorption capacity of soils containing endogenous contaminants. Journal of Hazardous Materials, 2007,143:419-430.
[26] Di Bene C, Tavarini S, Mazzoncini M, et al. Changes in soil chemical parameters and organic matter balance after 13 years of ramie [Boehmeria nivea (L.) Gaud.] cultivation in the Mediterranean region. European Journal of Agronomy, 2011, 35 (3):154-163.
[27] 茹淑华, 徐万强, 杨军芳, 等. 河北省典型蔬菜产区土壤理化性质和重金属累积特征及相关性研究. 食品安全质量检测学报, 2017, 8(8):2977-2982.
[28] 王美, 李书田. 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响. 植物营养与肥料学报, 2014, 20(2):466-480.
[29] 任顺荣, 邵玉翠, 高宝岩, 等. 长期定位施肥对土壤重金属含量的影响. 水土保持学报, 2005, 9(4):96-99.
[30] 马榕. 重视磷肥中重金属镉的危害. 磷肥与复肥, 2002, 17(6):5-6.
[31] Nziguheba G, Smolders E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science of the Total Environment, 2008, 390(1):53-57.
doi: 10.1016/j.scitotenv.2007.09.031 pmid: 18028985
[32] 林匡飞, 张大明, 李秋洪, 等. 苎麻吸镉特性及镉土的改良试验. 农业环境保护, 1996, 15(1):1-4,8.
[1] Wang Yi, Ren Yongfu, Zhang Zhengpeng, Ding Defang, Zhang Jing, Liu Yihong, Sun Duoxin, Chen Guangrong. The Effects of Different Covering Materials on Soil Environment and Maize Yield in Hexi Irrigation Area [J]. Crops, 2025, 226(3): 149-155.
[2] Lü Rongzhen, Maihemuti∙Rouzi , Zhang Yong, Maihemuti∙Remutula , Yaermaimaiti∙Alimu , Zhang Jiancheng, Yu Tianyi. Effects of Exogenous Hormones and Inhibitors on Hormone Content, Growth and Development of Peanut in Acidified Soil [J]. Crops, 2025, 226(3): 218-224.
[3] Ma Yingchen, Wang Jiatong, Feng Yanfei, Ma Haoxiong, Ren Xuejun, Guo Zhenqing, Li Yun, Han Yucui, Lin Xiaohu. Impacts of the Residual Effects of the Combined Application of Compound Fertilizers and Microbial Inoculant on Soil Physicochemical Properties and Quality of Foxtail Millet [J]. Crops, 2025, 41(2): 141-148.
[4] Zhang Jili, He Jinghao, Wei Jianyu, Huang Chongjun, Wang Wei, Cai Yixia. Effects of Application Period of Microbial Inoculants on Rhizosphere Soil Bacterial Diversity, Enzyme Activity and Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2025, 41(2): 162-171.
[5] Lei Yun, Liu Yueyan, Wang Jianjian. Effects of CO2 Enrichment and Phosphorus Level on Seedling Growth and Nutrient Element Absorption of Capsicum anmuum L. [J]. Crops, 2025, 41(2): 189-195.
[6] Ma Junmei, Dou Min, Liu Di, Yang Xiuhua, Yang Yong, Nian Fuzhao, Liu Yating, Li Yongzhong. Effects of Intercropping Flue-Cured Tobacco and Maize on Rhizosphere Soil Nutrients and Crop Growth [J]. Crops, 2025, 41(1): 227-234.
[7] Lü Weisheng, Wang Xinyue, Chen Ming, Deng Xueyun, Zhang Chen, Li Zijing, Luo Junyuan, Liu Xiaosan, Xiao Guobin. The Effect and the Residual Effect of Special Controlled-Release Nitrogen Fertilizer for Rapeseed (Brassica napus L.) under Rapeseed-Sesame Rotation System in Red-Soil Dryland [J]. Crops, 2024, 40(6): 113-119.
[8] Wang Benfu, Yu Zhenyuan, Song Pingyuan, Zhang Zuolin, Zhang Zhisheng, Li Yang, Su Zhangfeng, Zheng Zhongchun, Cheng Jianping. Effects of Soil Amendments on Soil Characteristics and Rice Growth in Cold Waterlogged Paddy Field [J]. Crops, 2024, 40(6): 126-131.
[9] Zhang Ying, Wang Haiyang, Jiang Lin, Guo Xueqing, Zhong Xiaoli, Zhang Xing, Lu Minjiao, Ji Xiaoming, Yang Xiaopeng, Wu Shusong. Comprehensive Evaluation and Spatial Distribution of Soil Fertility Suitability in Changting Tobacco-Growing Area [J]. Crops, 2024, 40(6): 171-178.
[10] Cui Hong, Liu Qing, Zhao Xiuzhen, Zong Hao, Li Ying, Shen Lili, Jiao Yubing, Wang Fenglong, Yang Jinguang, Yuan Lianlian. Applied Research of Pseudomonas protegens KBD-3 in Crop Disease Control and Selenium-Enrichment [J]. Crops, 2024, 40(6): 237-241.
[11] Xu Lang, Zhang Jibin, Shi Weibiao, Ye Tao, Chen Bo, Lü Qingyin, Wang Yu, Huang Zhian, Shen Rui, Chen Zhiyuan. Investigation and Analysis of Tartary Buckwheat and Planting Soil Resources in Different Producing Areas [J]. Crops, 2024, 40(6): 78-83.
[12] Tian Qinqin, Zhuo Le, Chen Nana, Zheng Dechao, Wu Xiaojing, Yu Peng, Chen Pingping, Yi Zhenxie. Effects of Calcium-Magnesium Hydrotalcite on Cadmium Content in Brown Rice of Double-Cropping Rice and Soil Characteristics [J]. Crops, 2024, 40(5): 131-139.
[13] Li Xinru, Xie Yanfen, Zhu Xuanquan, Wang Ge, Bai Yuxiang, Du Yu, Zhou Peng, Zhao Yuting, Zhu Hongqiong, Yang Fan, Xiao Zhiwen, Wang Wenbo, Fang Zhipeng, Han Jiabao, Wang Na. Soil Quality Evaluation and Its Correlation with Tobacco Leaf Quality under Different Previous Crops [J]. Crops, 2024, 40(5): 167-174.
[14] Lü Bo, Ding Liang, Guo Cong, Chen Feng, Zhou Haiping, Wang Xuesong, Dong Xiaolin, Xiang Fayun. Effects of Compound Microbial Fertilizer on Soil Nutrients and Rhizosphere Bacterial Community in Cotton Field [J]. Crops, 2024, 40(4): 209-215.
[15] Wang Fugui, Zou Runhou, Gao Julin, Wang Zhen, Cheng Zhipeng, Hao Qi, Zhang Yuezhong, Wang Zhigang. Effects of Straw Returning Methods on Soil Water and Heat and Seedling Growth and Yield of Spring Maize in Eastern Region of Inner Mongolia [J]. Crops, 2024, 40(4): 223-231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .