Crops ›› 2020, Vol. 36 ›› Issue (1): 110-116.doi: 10.16035/j.issn.1001-7283.2020.01.018

Previous Articles     Next Articles

Effects of Different Planting Densities on Biomass Yield and Silage Quality of Barley

Zhao Zhun1,2,Li Jian1,2,Song Ruijiao1,2,Guo Yan1,Ling Jiangrui1,Qi Juncang1,2()   

  1. 1College of Agriculture,Shihezi University, Shihezi 832003, Xinjiang, China
    2The Key Laboratory of Oasis Eco-Agriculture of Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang, China
  • Received:2019-07-01 Revised:2019-08-27 Online:2020-02-15 Published:2020-02-23
  • Contact: Juncang Qi E-mail:shzqjc@qq.com

Abstract:

In order to determine the effects of planting densities on different barley cultivars (lines) in northern Xinjiang, three planting densities (2.25×10 4, 3.75×10 4 and 5.25×10 4 plant/ha) were set in this experiment. We studied the changes of multiple indexes of three barley cultivars (lines) (P13-3, P14-22 and Kenpimai 13) under the above planting densities, including agronomic traits, dry matter, nutritional composition of silage raw materials and silage quality. The results showed that increasing sowing density could significantly reduce the proportion of stems to leaves and increase the proportion of panicles of P14-22 and P13-3, but it had no significant effect on Kenpimai 13. The maximum fresh weight was achieved under medium density and maximum dry matter content was increased significantly in medium and high planting densities. In this experiment, increasing planting density could increase the contents of neutral and acid detergent fiber, decrease the contents of crude protein, crude fat and crude ash of P13-3. The increase in planting density had no significant effect on the content of soluble carbohydrate. There was no significant difference in pH and contents of lactic acid, acetic acid, propionic acid and butyric acid under different planting densities. In three barley cultivars (lines), Kenpimai 13 was the best one on quality after silage. To sum up, silage barley in northern Xinjiang has high yield and nutritional quality under the condition of medium density.

Key words: Barley (Hordeum vulgare L.), Density, Silage quality, Nutritional value

Table 1

Variance analysis of main agronomic traits of barley under different planting densities"

变异来源
Source
自由度
Degree of freedom
株高
Plant height
茎比例
Stem proportion
叶比例
Leaf proportion
穗比例
Ear proportion
区组Blocks 2 0.23 0.18 5.04 2.37
品种(系)Cultivars (Lines) 2 4.84** 18.79** 33.03** 45.30**
密度Densities 2 402.43** 6.18** 14.01** 24.42**
密度×品种(系) Density×Cultivar (Line) 4 2.69* 3.59* 12.37** 16.62**

Table 2

Effects of different planting densities on main agricultural traits of barley"

品种(系)
Cultivar (Line)
种植密度
Planting density
株高(cm)
Plant height
茎比例(g/g)
Stem proportion
叶比例(g/g)
Leaf proportion
穗比例(g/g)
Ear proportion
P14-22 低Low 85.38±1.26c 0.23±0.02a 0.24±0.01a 0.53±0.03e
中Medium 88.44±1.96c 0.20±0.01b 0.15±0.01bc 0.65±0.01cd
高High 87.20±2.02c 0.18±0.01bc 0.15±0.02bc 0.66±0.01bcd
垦啤麦13 Kenpimai13 低Low 108.24±2.47a 0.17±0.00cd 0.13±0.01c 0.70±0.01a
中Medium 109.46±3.05a 0.18±0.00bc 0.14±0.01c 0.68±0.01abc
高High 104.08±1.24b 0.17±0.01cd 0.13±0.02c 0.70±0.01a
P13-3 低Low 86.04±3.20c 0.18±0.03bc 0.18±0.01b 0.62±0.02d
中Medium 87.18±1.89c 0.15±0.01d 0.16±0.02bc 0.65±0.02cd
高High 86.24±2.62c 0.15±0.01d 0.15±0.03bc 0.67±0.03bcd

Table 3

Variance analysis of fresh grass and hay grass yield and water soluble carbohydrate of barley under different planting densities"

变异来源 Source 自由度
Degree of freedom
鲜草产量
Fresh grass yield
干草产量
Hay grass yield
干物质含量
Dry matter content
可溶性碳水化合物
Water soluble carbohydrate
区组Blocks 2 1.47 0.38 28.03 0.43
品种(系) Cultivars (Lines) 2 62.97** 9.07** 30.82** 7.24**
密度Densities 2 37.27** 24.20** 18.37** 0.83
密度×品种(系) Density×Cultivar (Line) 4 4.82** 1.53* 2.71* 0.19

Table 4

Effects of different planting densities on fresh grass, hay grass yield and water soluble carbohydrate of barley"

品种(系)
Cultivar (Line)
种植密度
Planting density
鲜草产量(t/hm2)
Fresh grass yield
干草产量(t/hm2)
Hay grass yield
干物质含量(%)
Dry matter content
可溶性碳水化合物(%)
Water soluble carbohydrate
P14-22 低Low 28.17±0.44cd 14.30±0.66c 51.23±2.21c 2.82±0.23b
中Medium 33.61±0.51a 17.74±0.77a 52.14±1.27c 2.43±0.54b
高High 30.28±1.75bc 16.14±1.30ab 53.32±0.87c 2.54±0.43b
垦啤麦13 Kenpimai 13 低Low 24.72±1.13ef 12.61±0.39cd 50.86±2.43c 4.52±0.52a
中Medium 30.02±1.80b 17.11±1.29ab 56.82±0.77b 4.21±0.34a
高High 30.22±1.39bc 17.16±1.16a 57.29±0.28b 4.22±0.63a
P13-3 低Low 23.72±1.36f 12.25±0.99d 52.39±2.23c 2.22±0.43b
中Medium 26.44±0.95de 14.85±0.88bc 56.82±1.86b 1.73±0.37b
高High 23.72±0.25f 15.38±0.80bc 65.34±3.17a 1.93±0.48b

Table 5

Variance analysis of silage material quality of barley under different planting densities"

变异来源Source 自由度
Degree of freedom
中性洗涤纤维
Neutral detergent fiber
酸性洗涤纤维
Acid detergent fiber
粗蛋白
Crude protein
粗脂肪
Crude fat
粗灰分
Crude ash
区组Blocks 2 0.28 0.17 1.02 0.18 6.77
品种(系) Cultivars (Lines) 2 1.64 4.38 134.86** 4.56* 18.46**
密度Densities 2 8.99* 32.63** 24.50** 1.50 11.27**
密度×品种(系) Density×Cultivar (Line) 4 2.41 8.69* 20.01** 4.01* 1.59

Table 6

Effects of different planting densities on the quality of barley silage material %"

品种(系)
Cultivar (Line)
种植密度
Planting density
中性洗涤纤维
Neutral detergent fiber
酸性洗涤纤维
Acid detergent fiber
粗蛋白
Crude protein
粗脂肪
Crude fat
粗灰分
Crude ash
P14-22 低Low 56.58±2.62c 24.16±1.12cd 4.63±0.12cd 1.88±0.33a 6.29±0.09ab
中Medium 65.66±3.50a 18.98±1.51e 4.29±0.24de 1.83±0.37a 5.74±0.28bc
高High 62.78±0.85ab 32.76±1.94a 4.57±0.19cd 1.53±0.09ab 5.87±0.08c
垦啤麦13 Kenpimai13 低Low 59.89±0.18bc 22.56±1.66cd 4.10±0.28e 1.60±0.21ab 5.47±0.28cd
中Medium 63.03±1.24ab 27.72±2.33b 3.71±0.20f 1.79±0.12a 5.47±0.70cd
高High 57.35±3.55c 29.01±1.98b 4.01±0.16ef 1.13±0.36bc 5.09±0.30d
P13-3 低Low 60.44±4.03bc 21.08±0.15de 6.65±0.28a 1.44±0.15ab 6.38±0.12a
中Medium 64.04±2.82ab 23.95±3.00cd 5.26±0.19b 1.60±0.28ab 5.72±0.27bc
高High 62.43±0.99ab 25.97±1.99bc 4.82±0.23c 1.04±0.25c 5.68±0.21c

Table 7

Variance analysis of silage quality of barley under different planting densities"

变异来源Source 自由度
Degree of freedom
pH 氨态氮
NH3-N
乳酸
Lactic acid
乙酸
Acetic acid
丙酸
Propionic acid
丁酸
Butyric acid
区组Blocks 2 0.77 0.22 0.77 1.13 0.05 0.00
品种(系) Cultivars (Lines) 2 7.50* 6.79* 7.50* 5.16* 7.96** 0.00
密度Densities 2 1.43 4.09* 1.43 1.42 1.23 0.00
密度×品种(系) Density×Cultivar (Line) 4 1.99 1.39 1.99 1.69 0.19 0.00

Table 8

Effects of different planting densities on barley silage quality"

品种(系)
Cultivar (Line)
种植密度
Planting density
pH 氨态氮(%)
NH3-N
乳酸(%)
Lactic acid
乙酸(%)
Acetic acid
丙酸(%)
Propionic acid
丁酸(%)
Butyric acid
P14-22 低Low 3.99±0.11c 3.57±0.36a 3.99±0.11c 0.43±0.10ab 0.14±0.05c 0
中Medium 4.34±0.33abc 2.43±0.09ab 4.34±0.33abc 0.49±0.03a 0.09±0.07c 0
高High 4.31±0.06bc 3.49±0.13a 4.31±0.06bc 0.49±0.05a 0.11±0.02c 0
垦啤麦13 Kenpimai13 低Low 4.56±0.07ab 2.38±0.48ab 4.56±0.07ab 0.53±0.06a 0.13±0.03c 0
中Medium 4.57±0.20ab 2.18±0.02c 4.57±0.20ab 0.48±0.07a 0.09±0.10c 0
高High 4.77±0.07a 2.31±0.57ab 4.77±0.07a 0.51±0.05a 0.12±0.04c 0
P13-3 低Low 4.47±0.25ab 3.14±0.39ab 4.47±0.25ab 0.27±0.24b 0.28±0.11a 0
中Medium 4.66±0.18ab 2.46±1.00ab 4.66±0.18ab 0.50±0.17a 0.21±0.09ab 0
高High 4.24±0.44bc 2.42±0.47ab 4.24±0.44bc 0.27±0.07b 0.20±0.03ab 0
[1] 陈明贤, 张国平 . 全球大麦发展现状及中国大麦产业发展分析. 大麦与谷类科学, 2010,10(4):1-4.
[2] 卢良恕 . 中国大麦学. 北京: 中国农业出版社, 1995.
[3] 张融, 李先德 . 饲料大麦的应用价值及开发前景. 中国食物与营养, 2015,21(7):27-31.
[4] 张彦虎 . 新疆草地农业发展模式研究. 石河子:石河子大学, 2015.
[5] 林志玲, 朱铁霞, 李天琦 , 等. 种植密度对科尔沁沙地饲用燕麦产量和品质的影响. 草业学报, 2019,27(3):760-765.
[6] 乔雪峰, 孙启忠, 柳茜 , 等. 种植密度对青贮玉米产量和青贮品质的影响. 草学,2018(4):59-63.
[7] 胡文河, 宋红凯, 吴春胜 , 等. 密度对青贮玉米产量和品质的影响. 玉米科学, 2008,16(6):100-102.
[8] 路海东, 薛吉全, 郝引川 , 等. 密度对不同类型青贮玉米饲用产量及营养价值的影响. 草地学报, 2014,22(4):865-870.
[9] 邢虎成, 谭松林, 张英 , 等. 刈割时期和留茬高度对大麦鲜草产量及饲用品质的影响. 中国农学通报, 2018,34(31):1-4.
[10] 田静, 谢昭良, 刘家杏 , 等. 冬闲田种植大麦不同生育期的营养价值和青贮品质. 草业科学, 2017,34(4):753-760.
[11] Van Soest P J, Robertson J B, Lewis B A . Methods for dietary fiber,neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991,74(10):3583-3597.
[12] Snell F D, Biffen F M. Official methods of analysis. Arlington: Chemical Publishing Company, 1990.
[13] Filya I, Ashbell G, Hen Y , et al. The effect of bacterial inoculants on the fermentation and aerobic stability of whole crop wheat silage. Animal Feed Science and Technology, 2000,88(1/2):39-46.
[14] Dubois M, Gilles K A, Hamilton J K , et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956,28(3):350-353.
[15] 李蕾蕾, 花登峰, 郑兴卫 , 等. 含水量和混播比例对青南牧区燕麦-箭筈豌豆/毛苕子混播青贮品质的影响. 草业学报, 2018,27(7):166-174.
[16] 于德花, 陈小芳, 毕云霞 , 等. 种植密度对不同株型青贮玉米产量及相关性状的影响. 草业科学, 2018,35(6):1465-1471.
[17] 王晓娟, 何海军, 寇思荣 , 等. 种植密度对不同品种青贮玉米生物产量和品质的影响. 草业科学, 2019,36(1):169-177.
[18] 甘辉林, 权金鹏, 马垭杰 , 等. 不同优质高产青贮玉米新品种生产性能及营养价值评价. 畜牧兽医杂志, 2017,36(5):11-15.
[19] Hilla J, Leaver J D . Effect of stage of growth at harvest and level of urea application on chemical changes during storage of whole-crop wheat. Animal Feed Science and Technology, 1999,77(3):281-301.
[20] 冯鹏, 温定英, 孙启忠 . 种植密度对玉米产量及青贮品质的影响. 草业科学, 2011,28(12):2203-2208.
[21] Seale D R, Henderson A R, Pettersson K O , et al. The effect of addition of sugar and inoculation with two commercial inoculants on the fermentation of lucerne silage in laboratory silos. Grass and Forage Science, 1986,41(1):61-70.
[22] 秦梦臻, 沈益新 . 生育期对小麦全株青贮发酵品质的影响. 中国农业科学, 2012,45(8):1661-1666.
[1] Hongtao Shen,Fusheng Zhang,Dong Li,Jianhua Qiu,Xinghong Cai,Yubao Qin. Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang [J]. Crops, 2020, 36(2): 105-111.
[2] Tianwen Wang,Changzhong Li,Guanghai Chen. Effects of Sowing Dates and Densities on Propagation, Growth and Yield of Potato Seeds [J]. Crops, 2020, 36(2): 162-167.
[3] Zhichang Yang,Tao Shen,Zhuo Luo,Zhi Peng,Yuqian Hu,Tao Zi,Tinghao Xiong,Haixing Song. Effects of Low Nitrogen Rate Combined with High Planting Density on Yield Formation and Nitrogen Use Efficiency of Machine-Transplanted Double Cropping Rice [J]. Crops, 2020, 36(2): 71-81.
[4] Chen Zongpei,Xue Jiaxin,Li Ben,Wang Guiyan. Response of Photosynthetic Characteristics and Canopy Micro-Environment to Planting Density and Row Spacing of Maize (Zea Mays L.) [J]. Crops, 2020, 36(1): 179-186.
[5] Wang Yan,Wang Shulin,Zhang Qian,Feng Guoyi,Lei Xiaopeng,Liang Qinglong,Qi Hong. Correlation Analysis between Main Agronomic Traits and Density in Mechanical Harvest Cotton [J]. Crops, 2019, 35(6): 66-70.
[6] Zhuang Kezhang,Wu Ronghua,Zhang Chunyan,Xu Lihua,Xu Xiangbo,Ding Yi,Wang Zhennan. Effects of Density on Yield and Nutritional Value of Different Types of Silage Maize [J]. Crops, 2019, 35(6): 140-144.
[7] Li Hu,Chen Chuanhua,Liu Guanglin,Wu Zishuai,Huang Qiuyao,Luo Qunchang. Effects of Nitrogen Fertilizer Application Rate and Planting Density on Agronomic Traits and Yield of Guiyu 9 [J]. Crops, 2019, 35(6): 99-103.
[8] Zhao Zhun,Qi Juncang,Li Jian,Guo Yan,Ling Jiangrui,Li Huqing. Influence of Mowing Stages on Hay Yield and Fermentation Quality of Spring Barley [J]. Crops, 2019, 35(5): 180-185.
[9] Yan Wei,Li Guolong,Li Zhi,Cao Yang,Zhang Shaoying. Effects of Nitrogen Application Rate and Planting Density Interaction on Photosynthetic Characteristics and Root Yield of Sugar Beet under Full-Film Mulching in Arid Regions [J]. Crops, 2019, 35(4): 100-106.
[10] Xixi Dai,Heming Zhan,Xinghong Cui,Yinyue Zhao,Dandan Shan,Liang Zhang,Tiejun Wang. A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping [J]. Crops, 2019, 35(2): 128-135.
[11] Huihui Tang,Yanli Xu,Qingyan Wang,Zhengbo Ma,Guangyan Li,Hui Dong,Zhiqiang Dong. Effects of Foliar Spraying 5-Aminolevulinic Acid on Spring Maize Growth and Yield under Different Planting Densities [J]. Crops, 2019, 35(2): 136-141.
[12] Xinling Yang,Qian Yao,Wenli Ping,Yiqiong Ma,Baolin Wang,Guotao Jia,Yongfeng Yang,Hong Cui. Screening of High Aroma Mutants from Progenies of EMS Mutagenized Flue-Cured Tobacco [J]. Crops, 2019, 35(1): 68-74.
[13] Wang Lezheng,Hua Fangjing,Cao Pengpeng,Tian Yixin,Gao Fengju. Effects of Sowing Date and Planting Density on Yield and Related Traits in Adzuki Bean [J]. Crops, 2018, 34(6): 83-88.
[14] Zhang Xiangyu,Li Hai,Liang Haiyan,Zhang Zhi,Song Xiaoqiang,Zheng Minna. Effects of Different Row Spacing and Planting Density on the Growth Characteristics and Yield of Millet [J]. Crops, 2018, 34(5): 91-96.
[15] Zhang Ruidong,Cao Xiong,Yue Zhongxiao,Liang Xiaohong,Liu Jing,Huang Minjia. Effects of Nitrogen and Density Interaction on Grain Yield and Nitrogen Use Efficiency of Sorghum [J]. Crops, 2018, 34(5): 110-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum[J]. Crops, 2018, 34(4): 167 -174 .
[3] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[4] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars[J]. Crops, 2018, 34(4): 69 -78 .
[5] Jianxia Liu,Xiaodan Zhang,Runmei Wang,Feng Zhou,Wenying Liu,Zhiping Liu. Effects of Seed Soaking with 6-BA on Germination and Physiological Characteristics of Mung Bean under Salt Stress[J]. Crops, 2018, 34(1): 166 -172 .
[6] . [J]. Crops, 1998, 14(S): 37 -44 .
[7] . [J]. Crops, 2009, 25(6): 13 -17 .
[8] . [J]. Crops, 2004, 20(6): 54 .
[9] . [J]. Crops, 1994, 10(1): 6 -7 .
[10] . [J]. Crops, 1994, 10(1): 9 -11 .