Crops ›› 2022, Vol. 38 ›› Issue (3): 174-180.doi: 10.16035/j.issn.1001-7283.2022.03.025

Previous Articles     Next Articles

Effects of Biogas Slurry Instead of Chemical Fertilizer on Winter Wheat Yield

Pan Feifei1,2(), Tang Jiao3,4,5(), Sun Zhuang1, Chen Bihua1,2, Wang Guangyin1,2, Wu Dafu3,4, Wang Wei3   

  1. 1School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
    2Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, Henan, China
    3School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
    4Post-Doctorate R&D Base, Henan Agricultural University, Zhengzhou 450000, Henan, China
    5Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
  • Received:2021-04-23 Revised:2021-06-22 Online:2022-06-15 Published:2022-06-20
  • Contact: Tang Jiao E-mail:panfeifei89@163.com;tangjiaoviva1988@126.com

Abstract:

A two-factor experiment (the proportion of biogas replacing chemical fertilizer and the types of chemical fertilizer; B1 indicated chemical fertilizer only, B2 indicated that 50% of the total N in chemical fertilizer was replaced by biogas slurry, B3 indicated that 75% of the total N in chemical fertilizer was replaced by biogas slurry, B4 indicated that 100% of the total N in chemical fertilizer was replaced by biogas slurry; C1 indicated a chemical compound fertilizer N:P2O5:K2O=20:20:6 was applied, C2 indicated a chemical compound fertilizer with N:P2O5:K2O=17:17:17 was applied) was set in this experiment to study the influence on the morphological indexes, dry material accumulation and yield of winter wheat. The results showed that under different biogas slurry replacement proportion, the biomass of winter wheat straw and the total aboveground biomass were present as B2 > B1 > B3 > B4. Compared with the B1, B2 and B3 treatments, B4 treatment was not conducive to dry matter accumulation in shoot of winter wheat. The harvest index of winter wheat under C2 treatment was significantly higher than that of C1 treatment. Main effect analysis showed that the proportion of biogas slurry instead of chemical fertilizer and the types of chemical compound fertilizer had no significant effect on winter wheat morphological indexes, yield and its components. Biogas slurry instead of chemical fertilizer thus could save a lot of N, P, K fertilizers with the yield unchanged, and improved economic returns, thus had a value for application in agricultural production.

Key words: Biogas slurry, Chemical fertilizer, Winter wheat, Yield, Morphological index

Table 1

Amounts and sources of fertilizer applied for different treatments kg/hm2"

Table 2

Effects of biogas slurry replacement ratio on winter wheat morphological indexes"

因素
Factor
处理
Treatment
株高
Plant height
(cm)
基部第1节间长
Length of the first internode
at base of stem (cm)
穗下节间长
Length of subspike
internode (cm)
穗下节间/基部第1节间
Subspike internode/the first
internode at base of stem
沼液Biogas slurry B1 74.04±2.83a 5.64±0.76a 24.17±2.14a 4.34±0.64a
B2 74.84±4.53a 5.84±0.81a 24.33±1.00a 4.22±0.46a
B3 74.36±2.90a 5.96±0.44a 23.74±0.90a 4.00±0.27a
B4 77.34±1.99a 6.06±0.19a 25.34±0.94a 4.18±0.08a
化肥
Chemical fertilizer
C1 74.73±3.78a 5.74±0.44a 24.41±1.59a 4.27±0.34a
C2 75.56±2.76a 6.01±0.69a 24.38±1.24a 4.10±0.46a
沼液Biogas slurry 0.29ns 0.72ns 0.32ns 0.63ns
化肥Chemical fertilizer 0.53ns 0.32ns 0.94ns 0.38ns
沼液×化肥Biogas slurry×chemical fertilizer 0.29ns 0.93ns 0.84ns 0.94ns

Table 3

Effects of biogas slurry replacement ratio on winter wheat dry matter accumulation and harvest index"

因素
Factor
处理
Treatment
秸秆生物量
Straw biomass (t/hm2)
地上部总生物量
Total aboveground biomass (t/hm2)
收获指数
Harvest index
沼液Biogas slurry B1 8.70±0.95ab 15.40±1.75ab 0.43±0.02a
B2 9.34±1.22a 16.70±1.04a 0.44±0.04a
B3 8.33±0.50ab 15.39±0.92ab 0.46±0.02a
B4 7.74±0.22b 14.58±0.36b 0.47±0.02a
化肥Chemical fertilizer C1 8.27±0.87a 15.35±1.33a 0.46±0.02a
C2 8.79±1.03a 15.69±1.32a 0.44±0.02b
沼液Biogas slurry 0.03* 0.05* 0.27ns
化肥Chemical fertilizer 0.14ns 0.51ns 0.05*
沼液×化肥Biogas slurry×chemical fertilizer 0.72ns 0.93ns 0.64ns

Table 4

Effects of biogas slurry replacement ratio on winter wheat yield and its components"

因素
Factor
处理
Treatment
穗数
Panicle number (×104/hm2)
穗粒数
Grains per spike
千粒重
1000-grain weight (g)
实收产量
Actual grain yield (kg/hm2)
沼液Biogas slurry B1 304±35a 48±2ab 42.11±1.60a 6703±928a
B2 336±8a 48±2ab 43.22±2.27a 7357±382a
B3 312±22a 49±3a 42.28±1.33a 7064±602a
B4 320±44a 46±2b 43.63±3.00a 6814±315a
化肥Chemical fertilizer C1 314±32a 48±3a 42.48±2.34a 7084±654a
C2 322±31a 48±2a 43.14±1.90a 6886±598a
沼液Biogas slurry 0.40ns 0.16ns 0.61ns 0.35ns
化肥Chemical fertilizer 0.53ns 0.62ns 0.49ns 0.47ns
沼液×化肥Biogas slurry×chemical fertilizer 0.95ns 0.61ns 0.74ns 0.89ns

Table 5

"

处理
Treatment
成本投入Cost input 投入总和
Total cost
粮食收入
Grain earnings
种子Seed 肥料Fertilizer 用工Labor 机械Machine
B1 C1 1125.00 3937.50 1500.00 1500.00 8062.50 15613.52
C2 1125.00 4632.36 1500.00 1500.00 8757.36 16492.76
B2 C1 1125.00 1968.75 2250.00 1500.00 6843.75 17590.21
C2 1125.00 2316.16 2250.00 1500.00 7191.16 18741.61
B3 C1 1125.00 984.38 2250.00 1500.00 5859.38 16641.61
C2 1125.00 1158.08 2250.00 1500.00 6033.08 16892.22
B4 C1 1125.00 750.00 750.00 1500.00 4125.00 16476.97
C2 1125.00 750.00 750.00 1500.00 4125.00 16481.94

Table 6

Effects of biogas slurry replacement ratio on economic benefit"

因素
Factor
处理
Treatment
经济效益(元/hm2
Economic benefit (yuan/hm2)
沼液Biogas slurry B1 7643.21±2154.99b
B2 11148.46±1311.97a
B3 10820.69±891.93a
B4 12354.46±1760.32a
化肥
Chemical fertilizer
C1 10357.92±2454.41a
C2 10625.48±2283.19a
沼液Biogas slurry 0.00**
化肥Chemical fertilizer 0.72ns
沼液×化肥
Biogas slurry×chemical fertilizer
0.98ns
[1] 屠云璋, 吴兆流. 2011年大中型沼气产业发展报告. 太阳能, 2012(2):23-25.
[2] 魏彬萌, 韩霁昌, 王欢元, 等. 灌施沼液比例对石灰性土壤性质和辣椒生长的影响. 中国土壤与肥料, 2017 (2):42-47.
[3] 万海文. 沼液对土壤养分和玉米、小麦生理特性及产量的影响. 杨凌:西北农林科技大学, 2016.
[4] Pan F F, Yu W T, Ma Q, et al. Do organic amendments improve the synchronism between soil N supply and wheat demand?. Applied Soil Ecology, 2018, 125:184-191.
doi: 10.1016/j.apsoil.2018.01.006
[5] 杨极武, 冯万贵, 安恒军, 等. 沼气、沼液和沼渣在蔬菜生产中的应用. 北方园艺, 2006(3):80-81.
[6] 郑学博, 樊剑波, 周静. 沼液还田对旱地红壤有机质及团聚体特征的影响. 中国农业科学, 2015, 48(16):3201-3210.
[7] 曹云, 常志州, 马艳, 等. 沼液施用对辣椒疫病的防治效果及对土壤生物学特性的影响. 中国农业科学, 2013, 46(3):507-516.
[8] 陈瑶, 史秋萍, 陈玉成. 沼液连续浇灌对旱作和水田土壤养分及重金属含量的影响. 水土保持学报, 2015, 29(2):76-80,105.
[9] Chen Z M, Wang Q, Ma J W, et al. Soil microbial activity and community composition as influenced by application of pig biogas slurry in paddy field in southeast China. Paddy and Water Environment, 2020, 18(1):15-25.
doi: 10.1007/s10333-019-00761-y
[10] 郑学博, 樊剑波, 何园球, 等. 沼液化肥全氮配比对土壤微生物及酶活性的影响. 农业工程学报, 2015, 31(19):142-150.
[11] Niyungeko C, Liang X Q, Liu C L, et al. Effect of biogas slurry application on soil nutrients,phosphomonoesterase activities,and phosphorus species distribution. Journal of Soils and Sediments, 2020, 20(2):900-910.
doi: 10.1007/s11368-019-02435-y
[12] Yan L L, Liu Q P, Liu C, et al. Effect of swine biogas slurry application on soil dissolved organic matter (DOM) content and fluorescence characteristics. Ecotoxicology and Environmental Safety, 2019, 184:109616.
doi: 10.1016/j.ecoenv.2019.109616
[13] 赖星, 伍钧, 王静雯, 等. 连续施用沼液对土壤性质的影响及重金属污染风险评价. 水土保持学报, 2018, 32(6):359-364,370.
[14] Miao J F, Ye J, Huang Y M, et al. Effects of biogas slurry irrigation on heavy metal contents in soils. Agricultural Science and Technology, 2014, 15(3):417-421.
[15] 汪吉东, 曹云, 常志州, 等. 沼液配施化肥对太湖地区水蜜桃品质及土壤氮素累积的影响. 植物营养与肥料学报, 2013, 19(2):379-386.
[16] 杨建霞, 王秀文, 宁海军, 等. 沼肥不同施肥量对大棚甜瓜生长发育及果实品质的影响. 北方园艺, 2020, 469(22):60-65.
[17] 郑学博, 樊剑波, 周静, 等. 沼液化肥配施对红壤旱地土壤养分和花生产量的影响. 土壤学报, 2016, 53(3):675-684.
[18] 李友强, 盛康, 彭思姣, 等. 沼液施用量对小麦产量及土壤理化性质的影响. 中国农学通报, 2014, 30(12):181-186.
[19] 冯伟, 侯翠翠, 刘东洋, 等. 沼液与氮肥配施对小麦产量及品质的影响. 麦类作物学报, 2013, 33(3):520-525.
[20] 万海文, 贾亮亮, 赵京奇, 等. 追施沼液对小麦光合特性及土壤酶活性和养分含量的影响. 西北农林科技大学学报(自然科学版), 2017, 45(1):35-44.
[21] 魏复盛. 水和废水监测分析方法. 北京: 中国环境科学出版社, 1989:278-286.
[22] 段国辉, 高海涛, 张学品, 等. 冬小麦水旱条件下株高构成与产量性状及抗旱指数相关分析. 陕西农业科学, 2006(4):1-3,30.
[23] 朱新开, 郭文善, 李春燕, 等. 小麦株高及其构成指数与产量及品质的相关性. 麦类作物学报, 2009, 29(6):1034-1038.
[24] 卢昆丽, 尹燕枰, 王振林, 等. 施氮期对小麦茎秆木质素合成的影响及其抗倒伏生理机制. 作物学报, 2014, 40(9):1686-1694.
[25] 姚金保, 马鸿翔, 姚国才, 等. 小麦抗倒性研究进展. 植物遗传资源学报, 2013, 14(2):208-213.
[26] 黄红英, 曹金留, 常志州, 等. 猪粪沼液施用对稻、麦产量和氮磷吸收的影响. 土壤, 2013, 45(3):412-418.
[27] 邵文奇, 文廷刚, 唐金陵. 不同沼液施用量对小麦生长及产量的影响. 福建农业学报, 2018, 33(2):144-149.
[28] 韩玉龙. 施钾对弱光胁迫下冬小麦叶绿素荧光特性及碳、氮代谢的影响. 郑州:河南农业大学, 2013.
[29] 祖艳群, 林克惠. 氮钾营养的交互作用及其对作物产量和品质的影响. 土壤肥料, 2000(2):2-7.
[30] 王旭东, 于振文, 王东. 钾对小麦旗叶蔗糖和籽粒淀粉积累的影响. 植物生态学报, 2003, 27(2):196-201.
doi: 10.17521/cjpe.2003.0030
[31] 王靖荃, 谷端银, 于晓东, 等. 沼液部分替代化肥在日光温室秋番茄上的应用效果. 应用生态学报, 2019, 30(1):243-250.
[32] 李泽碧, 王正银, 李清荣, 等. 沼液、沼渣与化肥配施对莴笋产量和品质的影响. 中国沼气, 2006(1):27-30.
[33] 赵娟. 调控内源生长素和细胞分裂素水平实现棉花种子—纤维产量和品质的同步改良. 重庆:西南大学, 2014.
[34] 翟开恩. 生长素调控水稻籽粒灌浆的机理初探. 金华:浙江师范大学, 2014.
[35] 刘思辰, 王莉玮, 李希希, 等. 沼液灌溉中的重金属潜在风险评估. 植物营养与肥料学报, 2014, 20(6):1517-1524.
[36] 吴树彪, 崔畅, 张笑千, 等. 农田施用沼液增产提质效应及水土环境影响. 农业机械学报, 2013, 44(8):118-125,179.
[37] 吴华山, 郭德杰, 马艳, 等. 猪粪沼液施用对土壤氨挥发及玉米产量和品质的影响. 中国生态农业学报, 2012, 20(2):163-168.
[38] 陈永根, 彭永红, 宋哲岳, 等. 沼液施用对土壤温室气体排放的影响. 浙江农林大学学报, 2013, 30(1):32-37.
[1] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[2] Feng Changhui, Jiao Chunhai, Zhang Youchang, Bie Shu, Qin Hongde, Wang Qiongshan, Zhang Jiaohai, Wang Xiaogang, Xia Songbo, Lan Jiayang, Chen Quanqiu. Genetic Analysis for Yield and Fiber Quality Traits in Upland Cotton Based on Partial NCII Mating Design [J]. Crops, 2022, 38(5): 13-21.
[3] Chang Haigang, Li Guang, Yuan Jianyu, Xie Mingjun, Qi Xiaoping. Effects of Different Fertilization Methods on Soil Nutrients and Yield of Spring Wheat in the Loess Hilly Region of Central Gansu Province [J]. Crops, 2022, 38(5): 160-166.
[4] Zhang Xi, Xie Jin, Huang Hao, Gao Renji, Lu Chao, Zhou Yilin, Liang Zengfa, Wang Wei. Effects of Nitrogen Fertilizer Operation and Plant Spacing on Yield and Quality of Yunyan 116 in Pu’er Tobacco Area [J]. Crops, 2022, 38(5): 188-194.
[5] Shi Bixian, Tao Jianfei, Gao Yan, Xie Huihong, Abulimiti·Aierken , Cheng Pingshan, Maitituersun·Sadike , Sha Hong. Effects of Different Planting Densities on the Morphological Traits and Yields of Three Confectionery Sunflower Varieties [J]. Crops, 2022, 38(5): 195-200.
[6] Xu Min, Jin Lulu, Li Ruichun, Sun Liyuan, Wang Zisheng. Study on Cotton Chemical Topping in Liaohe Cotton Area [J]. Crops, 2022, 38(5): 201-207.
[7] Tao Yueyue, Sun Hua, Wang Haihou, Lu Changying, Shen Mingxing. Effects of Harvest Date and Drying Days on the Yield, Crude Protein Content and Moisture of Forage Rapeseed [J]. Crops, 2022, 38(5): 215-220.
[8] Zhang Chonghua, Duan Licheng, Wang Shangming, Zhang Qingxia, Wang Chengzi, Wu Fengyu, Yang Lin. Effects of Sowing Date on Late-Rice Yield and Utilization of Heat-Light Resources in Jiangxi Province [J]. Crops, 2022, 38(5): 229-234.
[9] Pan Junfeng, Liu Yanzhuo, Liang Kaiming, Huang Nongrong, Peng Bilin, Fu Youqiang, Hu Xiangyu, Zhong Xuhua, Li Meijuan, Hu Rui. Effects of Long- and Short-Term Reduction of Phosphorus Input on Yield and Phosphorus Utilization of Double Cropping Rice in South China [J]. Crops, 2022, 38(5): 241-248.
[10] Li Rui, Dong Liqiang, Shang Wenqi, Yu Guangxing, Dai Guijin, Wang Zheng, Li Yuedong. Effects of Water Spraying Interval at Seedling Stage on Growth and Yield of Rice [J]. Crops, 2022, 38(5): 249-254.
[11] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[12] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[13] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[14] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[15] Li Zujun, Jiang Xue, Yang Tonglian, Wu Chaoxin, Zhang Xichun, Jiang Xuehai, Long Wuhua, Zhang Yushan, Zhu Susong. Effects of Different Fertilizer Ratios on Yield and Taste Quality of Guizhouhe Goudang No.1 [J]. Crops, 2022, 38(4): 160-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!