Crops ›› 2022, Vol. 38 ›› Issue (5): 118-123.doi: 10.16035/j.issn.1001-7283.2022.05.016

Previous Articles     Next Articles

Effects of Different Altitudes on the Contents of Aroma Precursors in Air Cured Cigar

Liu Hui1(), Liu Boyuan1, Jin Mingke1, Yang Weili2, Zhang Siwei1, Zhao Mingqin1()   

  1. 1College of Tobacco Science, Henan Agricultural University, Zhengzhou 450003, Henan, China
    2Dazhou Tobacco Company of Sichuan Province, Dazhou 635000, Sichuan, China
  • Received:2021-06-18 Revised:2022-04-27 Online:2022-10-15 Published:2022-10-19

Abstract:

In order to study the effects of different altitudes on the aroma precursors of cigars, the middle and upper leaves of cigars planted at three different altitudes in Dazhou, Sichuan province were selected to analyze the differences of main aroma precursors content. The results showed that, with the increase of altitude, the content of polyphenols in middle and upper leaves increased gradually. The content of polyphenols in high altitude was significantly higher than that in medium and low altitude on the whole. Pigment substances showed different performance with the increase of altitude, chlorophyll content decreased gradually with the increase of altitude, on the contrary, the content of xanthophyll and β-carotene increased gradually, and the change law of middle and upper leaves were the same. The total amount of organic acids of upper leaves at high altitude increased by 20.43% and 29.80%, respectively, compared with medium and low altitude, and the treads of middle leaves was the same as the upper leaves. The total alkaloid content of upper and middle tobacco leaves decreased significantly with the increase of altitude (P<0.05). The average alkaloid content from high, medium and low altitude of middle and upper leaves was 8.75%, 7.00% and 4.12%, respectively. According to the grey correlation analysis, altitude had a greater impact on polyphenols, followed by pigments and alkaloids.

Key words: Altitude, Polyphenol, Pigment, Organic acids, Alkaloid, Grey correlation degree

Table 1

Effects of altitude on polyphenol content of cigar mg/g"

叶位Leaf position 海拔Altitude 绿原酸Chlorogenic acid 云香苷Picroside 莨菪亭Hyoscyamus pavilion 总量Total
上部叶
Upper leaf
0.160±0.050a 1.880±0.860a 0.014±0.004a 2.060±0.190a
0.078±0.023b 0.820±0.710b 0.007±0.003b 0.910±0.740b
0.057±0.007b 0.730±0.120b 0.009±0.002ab 0.800±0.130b
中部叶
Middle leaf
0.110±0.037a 1.600±0.220a 0.008±0.003a 1.720±0.190a
0.066±0.015a 0.790±0.710ab 0.004±0.002a 0.860±0.730ab
0.060±0.007a 0.530±0.340b 0.006±0.002a 0.590±0.340b

Table 2

Effects of altitude on pigment of cigar μg/g"

叶位
Leaf position
海拔
Altitude
叶黄素
Xanthophyll
叶绿素
Chlorophyll
β-胡萝卜素
β-carotene
上部叶
Upper leaf
122.78±55.84a 7.03±2.02b 81.76±23.61a
120.08±24.28a 35.50±7.67ab 69.45±5.83ab
109.58±34.63b 91.85±10.79a 63.17±18.40b
中部叶
Middle leaf
116.54±19.56b 56.77±11.12b 56.08±14.01a
96.37±32.43a 91.65±8.33a 50.64±5.29a
87.66±20.55b 103.45±20.36a 46.17±17.78a

Table 3

Effects of altitude on the contents of main organic acids in cigar mg/g"

叶位
Leaf position
海拔
Altitude
草酸
Oxalate
丙二酸
Malonic acid
苹果酸
Malic acid
柠檬酸
Citric acid
总量
Total
上部叶
Upper leaf
31.98±1.43a 4.75±0.44a 91.50±16.23a 43.93±16.83a 172.16±1.69a
22.77±3.11b 3.79±0.67b 77.70±18.00b 38.69±6.46a 142.95±14.91b
21.89±1.52b 3.63±0.17b 73.55±17.38b 33.56±16.55b 132.63±25.38b
中部叶
Middle leaf
30.33±3.69a 4.47±0.77a 86.15±30.09a 34.90±11.81a 169.58±31.83a
24.76±3.79ab 3.25±1.27b 68.40±9.15b 33.64±11.77a 155.85±21.48b
21.62±4.47b 2.80±0.29b 68.38±10.28b 28.63±7.99a 145.56±3.58bc

Table 4

Effects of altitude on alkaloid content in cigar %"

叶位
Leaf position
海拔
Altitude
烟碱
Nicotine
降烟碱
Nornicotine
假木贼碱
Equisetine
新烟草碱
Nicotinine
麦思明
Mesmin
总量
Total
上部叶
Upper leaf
2.72±0.24c 1.20±0.11c 0.025±0.004a 0.26±0.06b 0.0063±0.0020b 4.21±0.92c
3.73±0.78b 2.01±0.31b 0.032±0.004a 0.49±0.06a 0.0061±0.0020b 6.26±1.03b
4.74±0.48a 3.76±0.93a 0.044±0.007a 0.62±0.12a 0.0098±0.0010a 9.17±1.25a
中部叶
Middle leaf
1.78±0.75b 1.78±0.48c 0.028±0.006b 0.43±0.14a 0.0050±0.0020b 4.02±1.00b
3.19±0.95ab 3.91±0.93a 0.039±0.003a 0.56±0.06a 0.0160±0.0050a 7.72±1.30a
4.24±0.50a 3.40±0.35b 0.038±0.003a 0.63±0.09a 0.0100±0.0020a 8.32±1.80a

Table 5

Correlation between altitude and aroma precursors"

指标Index 上部叶Upper leaf 中部叶Middle leaf
关联度
Relevance
排序
Ranking
关联度
Relevance
排序
Ranking
多酚Polyphenol 0.4374 1 0.3675 1
色素Pigment 0.3152 3 0.2900 2
有机酸Organic acid 0.2949 4 0.2420 3
生物碱Alkaloid 0.3340 2 0.1806 4
[1] 简永兴, 杨磊, 谢龙杰. 西北海拔高度对烤烟常规化学成份含量的影响. 生命科学研究, 2005, 9(1):63-67.
[2] 李天福, 王树会, 王彪, 等. 云南烟叶香吃味与海拔和经纬度的关系. 中国烟草科学, 2005(3):22-24.
[3] 史宏志, 刘国顺. 烟草香味学. 北京: 中国农业出版社, 1998.
[4] 杨红旗. 中国烤烟主要香气前体物的研究. 长沙:湖南农业大学, 2006.
[5] 刘雅婷. 烟叶致香前体物高效分析方法研究. 长沙:湖南农业大学, 2018.
[6] Weeks W W. Chemistry of tobacco constituents influence on flavor and aroms. Recent Advances in Tobacco Science, 1985, 11:175-200.
[7] 刘百战, 蔡继宝, 朱立军, 等. 国内外部分白肋烟烟叶中非挥发性有机酸、高级脂肪酸、生物碱及pH值的对比分析. 中国烟草学报, 2002, 8(2):1-5.
[8] 杨虹琦, 周冀衡, 杨述元, 等. 不同纬度烟区烤烟叶中主要非挥发性有机酸的研究. 湖南农业大学学报(自然科学报), 2005, 31(3):281-284.
[9] 杨虹琦, 周冀衡, 郭紫明, 等. 湖南不同烤烟中非挥发性有机酸含量的差异. 中国烟草学报, 2006, 12(4):44-46,57.
[10] 韩富根. 烟草化学. 北京: 中国农业出版社, 2010.
[11] 云南省烟草科学研究所. 云南烟草栽培学. 北京: 科学出版社, 2007.
[12] 刘鹏飞, 位辉琴, 张骏, 等. 海拔对浓香型烤烟多酚类物质组成的影响. 烟草科技, 2014(7):85-88.
[13] 白森, 韦建玉, 邓宾玲, 等. 海拔高度对烟叶多酚和类胡萝卜素含量的影响. 贵州农业科学, 2012(7):66-68.
[14] 王淼, 翟欣, 陈雪, 等. 毕节地区不同基因型烤烟上部叶质体色素含量变化分析. 中国农业科技导报, 2012, 14(1):131-135.
[15] 杨志晓, 李雨, 王志红, 等. 不同海拔高度烟草叶片组织结构和质体色素特性研究. 江苏农业科学, 2016, 44(11):133-136.
[16] 周冀衡, 杨虹琦, 林桂华, 等. 不同烤烟产区烟叶中主要挥发性香气物质的研究. 湖南农业大学学报(自然科学版), 2004, 30(1):20-23.
[17] 张永安, 王瑞强, 杨述元, 等. 生态因子与烤烟中性挥发性香气物质的关系研究. 安徽农业科学, 2006, 34(18):4652-4652.
[18] 林彩丽, 杨铁钊, 杨述元, 等. 不同基因型烟草生长过程中主要化学成分的变化. 烟草科技, 2003(1):30-34.
[19] 罗富林, 刘爱玉. 主要栽培措施对烟草烟碱含量的影响. 作物研究, 2011, 25(4):410-413.
[20] 陈传孟, 陈继树, 谷堂生, 等. 南岭山区不同海拔烤烟品质研究. 中国烟草科学, 1997(4):10-14.
[21] 王树会, 李天福, 邵岩, 等. 不同烤烟品种及海拔对烟叶中有机酸的影响. 西南农业大学学报(自然科学版), 2006(1):127-130.
[22] 黎妍妍, 林国平, 李锡宏, 等. 湖北烤烟非挥发性有机酸含量及其与海拔高度的关系分析. 中国烟草科学, 2009, 30(6):53-56.
[23] 牛路路, 赵铭钦, 王雪丽, 等. 毕节地区不同海拔烤烟有机酸含量分析. 江西农业学报, 2013(6):77-79.
[24] 国家烟草专卖局. 烟草及烟草制品多酚类化合物绿原酸、莨菪亭和芸香苷的测定:YC/T 202-2006. 北京: 国家烟草专卖局, 2006.
[25] 国家烟草专卖局. 烟草及烟草制品质体色素的测定高效液相色谱法: YC/T 382-2010. 北京: 国家烟草专卖局, 2010.
[26] 徐晓燕, 孙五三, 王能如. 烟草多酚类化合物的合成与烟叶品质的关系. 中国烟草科学, 2003(1):3-5.
[27] 周冀衡, 朱小平, 王彦亭, 等. 烟草生理与生物化学. 合肥: 中国科学技术大学出版社, 1996.
[28] 吕凯, 王毅, 罗华元, 等. 云南烤烟总多酚积累与着生叶位的相关性分析. 云南农业大学学报(自然科学), 2012, 27(1):137-140.
[29] 朱小茜, 徐晓燕, 黄义德, 等. 多酚类物质对烟草品质的影响. 安徽农业科学, 2005, 33(10):132-133.
[30] 赵铭钦, 刘金霞, 黄永成, 等. 烟草质体色素与烟叶品质的关系综述. 中国农学通报, 2007, 23(7):135-138.
[31] 苏春江, 刘俊, 何锦峰. 海拔高度对大马士革Ⅲ玫瑰叶绿素含量的影响. 安徽农业科学, 2009, 37(9):3945-3946.
[32] 李晖, 田昆, 刘国栋, 等. 海拔变化对高原湿地优势植物叶绿素荧光特性的影响. 生态学报, 2018, 38(20):7421-7434.
[33] 靳百慧, 孙婷, 潘磊, 等. 海拔变化对元阳梯田水稻叶片结构及叶绿素荧光特征的影响. 分子植物育种, 2019, 17(22):7467-7475.
[34] 周党卫, 韩发, 腾中华, 等. UV-B辐射增强对植物光合作用的影响及植物的相关适应性研究. 西北植物学报, 2002, 22(4):1004-1010.
[35] 师生波, 贲桂英, 韩发. 不同海拔地区紫外线B辐射状况及植物叶片紫外线吸收物质含量的分析. 植物生态学报, 1999(6):529-535.
[36] 尹珍. 海拔和品种及其互作对烤烟香气前体物及中性香气物质的影响. 长沙:湖南农业大学, 2013.
[37] 王京, 王艳丽, 杨永霞, 等. 海拔对白肋烟质体色素含量及相关基因表达的影响. 西北植物学报, 2015, 35(1):131-137.
[38] 韩锦峰, 刘维群, 杨素勤, 等. 海拔高度对烤烟香气物质的影响. 中国烟草, 1993(3):1-3.
[39] 徐明康, 王松峰, 俞世康, 等. 植烟海拔对烤烟红花大金元质体色素及其降解产物的影响. 中国烟草科学, 2011, 32(6):43-46,52.
[40] 陈思昂, 张环纬, 陈彪, 等. 不同部位烤烟挥发性有机酸含量与烟叶品质的关系分析. 河南农业科学, 2019, 48(2):54-62.
[41] 闫克玉, 李春松, 闫洪洋, 等. 国产烤烟挥发酸含量的对比分析. 烟草科技, 2006(7):31-35.
[42] 简永兴, 董道竹, 刘建峰, 等. 湘西北海拔高度对烤烟多元酸及高级脂肪酸含量的影响. 湖南师范大学自然科学学报, 2007(1):72-75.
[43] 王育军, 李强, 谭涛, 等. 云南昆明烟区烤烟有机酸特征及影响因素初探. 昆明学院学报, 2020, 42(6):16-21.
[44] Rosa N, 孙希芳. 烟碱和烟草生理学. 中国烟草, 1984(2):45-46.
[45] Mizusaki S, Tanabe Y, Noguchi M, et al. Changes in the activities of ornithine decarboxylase,putrescine N-methyl transferaseand N-methyl-putrescine oxidase in tobacco roots in relation to nicotine biosynthesis. Plant and Cell Physiology, 1973, 14(1):103-110.
[46] Laytend D, Markt N. 烟草——生产、化学和技术. 北京: 化学工业出版社, 2003:271-277.
[47] 张利, 朱欣伟, 黄泉, 等. 海拔对暗紫贝母生长及总生物碱含量的影响. 四川林业科技, 2016, 37(2):80-83.
[1] Chen Yan, Chen Qiang, He Yi, Yu Huiping, Gao Junyi, Zhao Erwei, Lu Yingang. Effects of Tobacco Planting Ecoregions, Varieties and Their Interactions on Polyphenol Content and Quality of Flue-Cured Tobacco [J]. Crops, 2022, 38(6): 132-138.
[2] Li Yuexian, Duan Chunfang, Jiang Tailing, Liu Qian, Yan Wei, Xiong Xiankun, Zhang Linhui, Song Jiming, Shen Shaobin, Zhou Yingchun, Liu Guanghua. The Influences of Different Altitudes Gradients on Growth and Rhizome Quality of Cassava in Yunnan Province [J]. Crops, 2022, 38(5): 153-159.
[3] Zhu Lin, Cao Xiang, Deng Xiaohua, Hu Risheng, Pei Xiaodong, Xiang Shipeng, Xiao Zhijun, Wang Weimin, Zhang Cheng, Jiang Zhimin. Characteristics of Water Loss and Pigment Degradation of Xiangyan No.7 Tobacco Leaves during Curing Process [J]. Crops, 2022, 38(5): 174-179.
[4] Yao Yifan, Dai Zhuoyi, Jiang Zhimin, Xu Min, Li Fangfang, Zhang Xi, Dang Wei, Wu Zhaoyun, Ding Yongle, Yang Tiezhao. Analysis of the Effects of RNA Interference on Tobacco NtPPO8 Gene Silencing [J]. Crops, 2022, 38(3): 80-86.
[5] Li Maosen, Gao Weikai, Ren Tianbao, Jiang Shixiang, He Xiaoya, Luo Leqin, Yun Fei, Ke Xiaoting. Analysis of Bacterial Community and Influencing Factors in Tobacco Soil at Different Altitudes in Zunyi [J]. Crops, 2021, 37(6): 193-198.
[6] Zhang Xi, Wang Huifang, Dai Zhuoyi, Xue Gang, Xu Shixiao, Yang Tiezhao. Effects of Genotype, Nitrogen Application Rate and Their Interactions on Polyphenols in Flue-Cured Tobacco [J]. Crops, 2021, 37(3): 84-90.
[7] Zheng Di, Wen Chunyan, Shen Xianhua, Hu Biaolin, Che Jüqin, Xiong Yunhua, Wang Zhiquan, Wu Yanshou. Analysis on Variation in Rice Yield Components and Quality at Different Altitudes in Tibet [J]. Crops, 2020, 36(5): 199-203.
[8] Shumin Liang,Ying Wang,Zhechao Pan,Lei Zhang,Ningsheng Xu,Yanshan Li,Qiongfen Yang,Xianping Li,Jianming ai,Chunguang Yao,Lili Lu,Qijun Sui. Effects of Soil Moisture and Temperature with Different Cultivation Methods on the Yield and Tuberization of Potato [J]. Crops, 2018, 34(3): 90-96.
[9] Xiuxiu Luo,Peiyou Qin,Xiushi Yang,Li Mei,Guixing Ren. Changes of Functional Component Content and Antioxidant Activity during the Growth of Quinoa Sprouts [J]. Crops, 2018, 34(2): 123-128.
[10] Hongda Ye, ,Bencai Sha,Wenxiang Wang,Jia Liu,Yiran Ye,Meirong Hai. Effects of Altitude on Photosynthetic and Fluorescence Characteristics, and Antioxidant Properties on Solanum tuberosum L. [J]. Crops, 2017, 33(5): 93-99.
[11] Xi Zhang,Chenggong Jin,Jingxin Li,Ping Lu,Baiwen Jiang,Yamei Bai,Tongyu Xiao,Yutong Cui. The Effects of Seasonal Precipitation Fluctuation on the Photosynthetic Pigments of Redroot Pigweed (Amaranthus retroflexus) and Soybean (Glycine max) [J]. Crops, 2016, 32(1): 154-161.
[12] . [J]. Crops, 2013, 29(3): 49-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[4] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[5] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .
[6] Wenlian Bai,Yi Zheng,Jingxiu Xiao. Below-Ground Biotic Mechanisms of Phosphorus Uptake and Utilization Improved by Cereal and Legume Intercropping-A Review[J]. Crops, 2018, 34(4): 20 -27 .
[7] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China[J]. Crops, 2018, 34(4): 42 -47 .
[8] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress[J]. Crops, 2018, 34(4): 48 -52 .
[9] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane[J]. Crops, 2018, 34(4): 53 -61 .
[10] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang[J]. Crops, 2018, 34(4): 62 -68 .