Crops ›› 2025, Vol. 41 ›› Issue (1): 139-146.doi: 10.16035/j.issn.1001-7283.2025.01.017

;

Previous Articles     Next Articles

Effects of Furrow Straw Mulching on Soil Hydrothermal Characteristics and Yield of Potato under Dry Cultivation

Zhang Kaikai1(), Zhao Deming2, Ma Juhua3, Bai Pengjun4, Ma Peng1, Chen Hui1, Xu Wenjie1, Huang Caixia1(), Liu Zhongyu1   

  1. 1College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730000,Gansu, China
    2Gansu Institute of Architectural Design and Research Co., Ltd., Lanzhou 730000, Gansu, China
    3Department of Physics and Hydropower Engineering, Gansu Normal University for Nationalities, Gannan 747000, Gansu, China
    4Dingxi Water Conservancy Research Institute, Dingxi 743000, Gansu, China
  • Received:2023-12-29 Revised:2024-07-18 Online:2025-02-15 Published:2025-02-12

Abstract:

In order to investigate the influence mechanism of ridge furrow partial straw mulching on soil water temperature, water consumption, yield and water use efficiency of potato, and to seek the optimal planting model for potato quality and yield improvement in semi-arid areas, four treatments of high ridge straw strip mulch (SHL), plain straw strip mulch (PL), plastic film mulch (PSM) and open field plain mulch (CK) were set up under rain-reared conditions on the Loess Plateau for field tests in 2021. The results showed that compared with CK, straw mulching treatment significantly increased the soil water storage by 7.84%-15.34%, and decreased the water consumption and water intensity at seedling-tuber formation stage, tuber swelling-starch accumulation stage. Soil temperature decreased by 2.45%-17.37%. The yield and dry potato yield were increased by 2.93%- 18.67% and 2.50%-25.84%, the yield of large potato and commercial potato were increased by 4.29%-57.70% and 11.86%-27.50%, respectively, and the water content of tuber was increased by 2.84%-2.86%. In straw mulching treatment, PL treatment increased soil water storage by 6.95% compared with SHL. Compared with PL, SHL treatment significantly reduced water consumption by 14.23% and 39.98% at seedling-tuber formation stage and starch accumulation-harvest stage, respectively. The water consumption intensity was reduced by 12.17% and 40.09% at tuber swelling stage-starch accumulation stage and starch accumulation stage-harvest stage respectively. SHL treatment significantly increased the yield by 15.30% compared with PL. Compared with CK, water use efficiency of SHL, PL and PSM treatments were significantly increased. Compared with PSM, SHL and PL treatment increased by 6.17% and 2.23%, respectively. SHL was 3.85% higher than that of PL. By principal component analysis, partial mulching of high ridge straw (SHL) has the best effect on soil water and heat regulation in semi-arid area of central Gansu, and it is a suitable planting and cultivation mode.

Key words: Potato, Partial straw mulching, Moisture, Temperature, Yield

Fig.1

Variation of precipitation and temperature in potato growing period in 2021"

Table 1

Experimental design"

处理Treatment 设计方案Designing scheme
高垄秸秆局部覆盖SHL 垄高30 cm,垄宽70 cm,沟宽40 cm,垄上种植2行马铃薯,不覆盖,垄沟玉米秸秆整秆覆盖。
平作秸秆局部覆盖PL 不起垄,种植带宽70 cm,种植2行马铃薯,不覆盖,覆盖带宽40 cm,玉米秸秆整秆覆盖。
地膜局部覆盖PSM 不起垄,种植带宽70 cm,覆黑色地膜,膜上种植2行马铃薯,间隔带宽40 cm。
传统露地平作CK 不起垄,种植带宽70 cm,无覆盖,间隔带宽40 cm。

Fig.2

Change of water storage capacity in different potato treatment stages Different lowercase letters indicate significant differences among treatments at P < 0.05 level, the same below."

Fig.3

Change of water consumption in different potato treatment stages"

Table 2

Variation of daily water consumption intensity of potato under different treatments mm/d"

处理
Treatment
苗期―块茎形成期
Seedling-tuber
formation stage
块茎形成期―块茎膨大期
Tuber formation-
tuber swelling stage
块茎膨大期―淀粉积累期
Tuber swelling-
starch accumulation stage
淀粉积累期―收获期
Starch accumulation-
harvest stage
SHL 1.90±0.16a 5.59±0.19b 3.03±0.45a 2.81±0.70ab
PL 1.44±0.01bc 5.56±0.26b 3.45±0.42a 4.69±0.97a
PSM 1.63±0.04bc 5.68±0.21b 3.27±0.31a 4.79±0.51a
CK 1.17±0.08c 6.54±0.11a 3.70±0.04a 0.92±0.07b

Fig.4

The average soil temperature of 0-25 cm soil layer during the whole growth period of potato under different treatments"

Fig.5

Temperature variation of soil profile in 0-25 cm soil layer during potato key growth period"

Fig.6

Variation of soil mean temperature in each soil layer during potato critical growth period"

Table 3

Potato yields and commercial potato rates under different treatments"

处理
Treatment
产量
Yield
(kg/hm2)
大薯率
Large tuber
rate (%)
中薯率
Middle tuber
rate (%)
小薯率
Small tuber
rate (%)
商品薯率
Commercial
tuber rate (%)
块茎含水率
Tuber moisture
content (%)
干薯产量
Dry potato yield
(kg/hm2)
出干率
Dry yield
(%)
SHL 41 919.05±923.12a 33.04±4.10b 36.91±0.92a 30.04±3.19b 69.96±3.19b 81.60±0.20a 7684.18±399.79b 18.40±0.20b
PL 36 357.14±169.57bc 49.96±3.83a 29.79±2.31a 20.26±1.52c 79.74±2.31a 81.58±0.43a 9433.90±354.82a 18.42±0.43b
PSM 38 519.05±797.75b 38.10±5.99ab 34.95±4.20a 26.95±1.79b 73.05±4.20b 81.37±0.53a 7072.12±286.43b 18.63±0.53b
CK 35 323.81±745.29c 31.68±0.11b 30.85±0.55a 37.46±0.45a 62.54±0.55d 79.33±0.01b 7496.93±108.00b 20.67±0.01a

Fig.7

Changes of WUE under different treatments"

Table 4

Principal component analysis of traits"

指标
Index
主成分
Principal component
PC1 PC2
X1 0.826 0.548
X2 0.667 0.729
X3 0.629 -0.775
X4 0.958 -0.286
X5 0.982 -0.180
特征值Eigenvalue 3.405 1.546
贡献率Contribution rate (%) 68.095 30.929
累计贡献率Accumulative contribution rate (%) 75.205 99.024

Table 5

Scores of principal component analysis"

处理
Treatment
X1 X2 综合评价值
Comprehensive
evaluation value
综合排名
Comprehensive
ranking
SHL 1.64 1.13 1.47 1
PL 0.31 -1.76 -0.33 3
PSM 0.68 0.12 0.50 2
CK -2.64 0.51 -1.64 4
[1] 操信春, 刘喆, 吴梦洋, 等. 水足迹分析中国耕地水资源短缺时空格局及驱动机制. 农业工程学报, 2019, 35(18):94-100.
[2] 钱玉平, 田慧慧, 程宏波, 等. 秸秆覆盖及播种方式对马铃薯耗水特性和产量的影响. 中国生态农业学报(中英文), 2020, 28(6):826-834.
[3] 赵薇. 西北地区马铃薯种植的成本——收益分析. 兰州:兰州大学, 2022.
[4] 卢肖平. 马铃薯主粮化战略的意义、瓶颈与政策建议. 华中农业大学学报(社会科学版), 2015(3):1-7.
[5] 赵永萍, 潘丽娟. 甘肃省定西市安定区马铃薯产业发展现状及对策. 中国马铃薯, 2019, 33(3):189-192.
[6] 赵爱琴, 魏秀菊, 朱明. 基于Meta-analysis的中国马铃薯地膜覆盖产量效应分析. 农业工程学报, 2015, 31(24):1-7.
[7] Chen Y Z, Chai S X, Tian H H, et al. Straw strips mulch on furrows improves water use efficiency and yield of potato in a rainfed semiarid area. Agricultural Water Management, 2019, 211:142-151.
[8] 赵富贵, 张龙, 李丹, 等. 不同气候年型下耕作覆盖对宁南旱区土壤水热及马铃薯产量的影响. 作物学报, 2023, 49(10):2806-2819.
[9] 蒋文君, 康银红, 陈瑶, 等. 不同覆盖方式对土壤水热分布的影响. 土壤通报, 2022, 53(1):74-80.
[10] 蒋洪丽, 雷琪, 张彪, 等. 覆膜和有机无机配施对夏玉米农田温室气体排放及水氮利用的影响. 环境科学, 2023, 44(6):3426-3438.
[11] 张万恒, 张恒嘉, 王泽义, 等. 秸秆覆盖方式对西北旱作马铃薯产量效益的影响. 农业工程, 2018, 8(12):85-88.
[12] Li Q, Li H B, Zhang L, et al. Mulching improves yield and water-use efficiency of potato cropping in China: A meta- analysis. Field Crops Research, 2018, 221:50-60.
[13] 刘继龙, 吕航, 曹晓强, 等. 基于HYDRUS-1D的秸秆覆盖条件下黑土区玉米田土壤水盐运移规律. 干旱地区农业研究, 2023, 41(5):43-50.
[14] 张蓉, 陈晓文, 路平, 等. 不同覆盖模式对旱地马铃薯土壤水热变化和产量的影响. 作物杂志, 2023(5):145-150.
[15] 钱玉平, 田慧慧, 程宏波, 等. 秸秆覆盖及播种方式对马铃薯耗水特性和产量的影响. 中国生态农业学报, 2020, 28(6):826-834.
[16] 徐晨, 闫伟平, 张丽华, 等. 不同秸秆覆盖耕种模式对半干旱区玉米生长发育及水分利用的影响. 干旱地区农业研究, 2023, 41(6):157-167,226.
[17] Myint T, Gong D Z, Mei X R, et al. Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China. Agricultural Water Management, 2020, 241:106340.
[18] 韩固, 苗芳芳, 王楠, 等. 宁南旱区耕作覆盖对马铃薯产量及土壤水热特征的影响. 应用生态学报, 2022, 33(12):3352- 3362.
doi: 10.13287/j.1001-9332.202211.011
[19] 普雪可, 吴春花, 周永瑾, 等. 宁南旱区地膜秸秆沟垄双覆盖对土壤水分时空变化及马铃薯产量的影响. 草业学报, 2020, 29(10):149-160.
doi: 10.11686/cyxb2019534
[20] 王文杰, 马建涛, 柴雨葳, 等. 不同覆盖方式对旱地春小麦土壤水热及生长的影响. 麦类作物学报, 2023, 43(9):1206-1214.
[21] 吕莹莹, 马建涛, 李亚伟, 等. 不同覆盖方式对旱地玉米农田水分和产量的影响. 甘肃农业大学学报, 2022, 57(5):80-88.
[22] 柴雨葳. 覆盖对旱地小麦土壤水热和养分利用的影响及增产机制研究. 兰州:甘肃农业大学, 2022.
[23] 马建涛, 程宏波, 陈玉章, 等. 不同覆盖方式对旱地马铃薯耗水特性和产量的影响. 生态学杂志, 2020, 39(7):2242-2250.
[24] 杨志楠, 黄金文, 韩凡香, 等. 秸秆带状覆盖对西北雨养区马铃薯农田土壤温度及产量的影响. 作物杂志, 2022(1):196- 204.
[25] 周子军, 郭松, 陈琨, 等. 长期秸秆覆盖对免耕稻―麦产量、土壤氮组分及微生物群落的影响. 土壤学报, 2022, 59(4):1148-1159.
[26] Yin W, Chai Q, Guo Y, et al. Straw and plastic management regulate air-soil temperature amplitude and wetting-drying alternation in soil to promote intercrop productivity in arid regions. Field Crops Research, 2020, 249:107758.
[27] Araya A, Gowda P H, Golden B, et al. Economic value and water productivity of major irrigated crops in the Ogallala aquifer region. Agricultural Water Management, 2019, 214:55-63.
doi: 10.1016/j.agwat.2018.11.015
[28] 高虹, 常磊, 王仕娥, 等. 不同覆盖方式对旱地马铃薯叶片抗氧化生理及产量的影响. 分子植物育种, 2021, 19(4):1373- 1382.
[29] 冯雨露, 张森昱, 杨成存, 等. 秸秆带状覆盖对半干旱雨养区马铃薯光合特性及产量的影响. 核农学报, 2023, 37(7):1442- 1451.
doi: 10.11869/j.issn.1000-8551.2023.07.1442
[30] 李辉, 柴守玺, 常磊, 等. 秸秆带状覆盖下培土对马铃薯产量与水分利用效率的影响. 农业工程学报, 2019, 35(21):107- 115.
[31] Li R, Chai S X, Chai Y W, et al. Mulching optimizes water consumption characteristics and improves crop water productivity on the semi-arid Loess Plateau of China. Agricultural Water Management, 2021, 254:106965.
[32] 张乾, 赵德明, 朱有虎, 等. 秸秆带状覆盖对旱地冬小麦土壤温度及产量的影响. 麦类作物学报, 2023, 43(8):1056-1065.
[33] 马菊花, 黄彩霞, 李亚珍, 等. 秸秆覆盖量与覆盖方式对马铃薯耗水特性及产量的影响. 灌溉排水学报, 2023, 42(3):57- 64,96.
[34] 陈玉章, 田慧慧, 李亚伟, 等. 秸秆带状沟覆垄播对旱地马铃薯产量和水分利用效率的影响. 作物学报, 2019, 45(5):714- 727.
doi: 10.3724/SP.J.1006.2019.84097
[35] 马菊花, 黄彩霞. 秸秆局部覆盖种植对土壤水热及旱地马铃薯产量的影响. 中国马铃薯, 2023, 37(1):18-25.
[36] 纪文宁, 程宏波, 李亚伟, 等. 覆盖方式对旱地马铃薯阶段耗水量特征和产量的影响. 水土保持学报, 2022, 36(3):228-235.
[37] 王平, 陈娟, 谢成俊, 等. 干旱地区覆盖方式对土壤养分及马铃薯产量的影响. 中国土壤与肥料, 2021(4):118-125.
[1] Ren Yongfu, Li Jiayi, Chen Guopeng, Pu Tian, Chen Hong, Wang Xiaochun. Effects of Different Planting Patterns on the Yield and Efficiency of Maize in Strip Intercropping System [J]. Crops, 2025, 41(2): 101-108.
[2] Tian Wenqiang, Wang Hongyi, Nie Lingfan, Sun Ganggang, Zhang Jun, Zhang Qiangbin, Yu Shan, Li Jiahao, Zhang Jinshan, Shi Shubing. The Effects of Sowing Date and Sowing Rate on the Growth, Dry Matter Accumulation and Yield of Extremely Late-Sown Wheat Population [J]. Crops, 2025, 41(2): 115-122.
[3] Ji Jinghong, Liu Shuangquan, Ma Xingzhu, Hao Xiaoyu, Zheng Yu, Zhao Yue, Wang Xiaojun, Kuang Enjun. Effects of Different Controlled-Release Urea on Agronomic Traits, Yield and Nitrogen Use Efficiency of Cold Region Rice [J]. Crops, 2025, 41(2): 149-154.
[4] Zhang Jili, He Jinghao, Wei Jianyu, Huang Chongjun, Wang Wei, Cai Yixia. Effects of Application Period of Microbial Inoculants on Rhizosphere Soil Bacterial Diversity, Enzyme Activity and Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2025, 41(2): 162-171.
[5] Jin Dandan, Sui Shijiang, Chen Yue, Li Bo, Qu Hang, Gong Liang. Effects of Straw Returning with Nitrogen Application Reduction on Yield and Nitrogen Utilization of Rice in Liaohe Plain [J]. Crops, 2025, 41(2): 172-179.
[6] Li Yunxia, Yang Jiashuo, Li Yangyang, Xiang Shipeng, Yu Jinlong, Li Bin, Zheng Weiwei, Liu Lu. Effects of Different Transplanting Periods on the Growth, Development and Yield Quality of Flue-Cured Tobacco in Tobacco-Rice Rotation Area [J]. Crops, 2025, 41(2): 222-227.
[7] Li Junzhi, Dou Shuang, Wang Xiaodong, Zhang Meng, Xiao Jibing. Effects of Different Intercropping Patterns on Sorghum Growth and Development [J]. Crops, 2025, 41(2): 234-240.
[8] Zhao Lingling, Li Guifang, Cheng Chu, Zheng Mingjie, Hu Min, Zhu Jianfeng, Shen Ayi, Shen Aga, Wang Junzhen, Shao Meihong. Preliminary Report on Introduction Experiment of New Buckwheat Varieties in Zhejiang Province [J]. Crops, 2025, 41(2): 86-92.
[9] Luo Jianke, Zhang Kehou, Wang Zeyu, Zhang Pingzhen, Nan Ming. Research on the Production Performance of 18 Oat Varieties (Lines) in the Irrigation Area along the Yellow River in Baiyin City [J]. Crops, 2025, 41(2): 93-100.
[10] Mao Yanzhi, Sun Heguang, Li Qingquan, Guo Mei, Wang Wenzhong, Wei Qi, Dong Xuezhi, Min Fanxiang, Sun Jing, Song Xiaoyu. Research Progress in Monitoring and Early Warning of Potato Late Blight in China [J]. Crops, 2025, 41(1): 10-14.
[11] Long Weihua, Xian Zhihui, Zhang Zheng, Alibieligen·Hazitai , Zulehumaer·Wusimanjiang , Pu Huiming, Hu Maolong. Adaptability Analysis of Non-Transgenic Herbicide-Resistant Hybrid Rapeseed Lines from Lower Reaches of the Yangtze River in Ili River Valley, Xinjiang [J]. Crops, 2025, 41(1): 111-116.
[12] Chu Zhaokang, Wang Shiji, Bi Jianjian, Zhang Lin, Peng Chen, Chen Xiang, Wu Wenming. Effects of Sowing Dates on Yield and Filling Characteristics of Summer Maize in the Central Yangtze-Huaihe Region [J]. Crops, 2025, 41(1): 117-122.
[13] Lü Shuli, Ding Fang, Zheng Dongfang. Response of Photosynthetic Characteristics, Yield and Quality of Sesame Capsule to Different Chemical Ripening Agents [J]. Crops, 2025, 41(1): 155-161.
[14] Zhou Miaomiao, He Ruitong, Li Lan, Wang Hongxin, Peng Haoyuan, Zhang Yubo, Zhang Dan, Wang Jinbin, Luo Xinning, Qi Bingqin. Effects of Growth Regulators “EDAH” on Photosynthetic Characteristics and Yield Formation of Maize under High Planting Density [J]. Crops, 2025, 41(1): 162-169.
[15] Ma Peng, Wei Ximing, Ding Fangju, Zhang Kaikai, Wang Qiaoli, Xing Guyue, Chang Lei, Huang Caixia. Effects of Water and Nitrogen Regulation on Water Dynamics and Yield of Potato under Mulched Drip Irrigation [J]. Crops, 2025, 41(1): 170-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .