Crops ›› 2025, Vol. 41 ›› Issue (1): 83-88.doi: 10.16035/j.issn.1001-7283.2025.01.010
Previous Articles Next Articles
Gao Yulong1(), Zhao Lu1, Wang Bingwu1(
), Kong Guanghui1, Wang Yahui1, Liu Jianjin2, Duan Jie3, Wu Xingfu1, Li Qing2, Zhe Kaiming3
[1] | Dawson R F. Nicotine synthesis in excised roots. American Journal of Botany, 1942, 29:813-815. |
[2] | Dawson R F. Accumulation of nicotine in reciprocal grafts of tomato and tobacco. American Journal of Botany, 1942, 29:66-71. |
[3] | Katoh A, Ohki H, Inai K, et al. Molecular regulation of nicotine biosynthesis. Plant Biotechnology, 2005, 22(5):389-392. |
[4] |
Wagner R, Feth F, Wagner K G. Regulation in tobacco callus of enzyme activities of the nicotine pathway II. The pyridine- nucleotide cycle. Planta, 1986, 168(3):408-413.
doi: 10.1007/BF00392369 pmid: 24232153 |
[5] |
Dewey R E, Xie J. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry, 2013, 94:10-27.
doi: 10.1016/j.phytochem.2013.06.002 pmid: 23953973 |
[6] | Baldwin I T. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(14):8113-8118. |
[7] | Xu B, Timko M P. Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements. Plant Molecular Biology, 2004, 55(5):743-761. |
[8] |
Baldwin I T, Schmelz E A, Ohnmeiss T E. Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes. Journal of Chemical Ecology, 1994, 20(8):2139-2157.
doi: 10.1007/BF02066250 pmid: 24242736 |
[9] |
Shoji T, Yamada Y, Hashimoto T. Jasmonate induction of putrescine N-methyltransferase genes in roots of Nicotiana sylvestris. Plant and Cell Physiology, 2000, 41(7):831-839.
doi: 10.1093/pcp/pcd001 pmid: 10965939 |
[10] | Shoji T, Ogawa T, Hashimoto T. Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes. Plant and Cell Physiology, 2008, 49(7):1003-1012. |
[11] | Shoji T, Hashimoto T. Tobacco MYC2 regulates jasmonate- inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant and Cell Physiology, 2011, 52(6):1117-1130. |
[12] | Jiang G Q, Yao X F, Liu C M. A simple CELI endonuclease- based protocol for genotyping both SNPs and InDels. Plant Molecular Biology Reporter, 2013, 31(6):1325-1335. |
[13] | 国家烟草专卖局. 烟草及烟草制品烟碱、降烟碱、新烟碱、麦斯明和假木贼碱的测定气相色谱-质谱联用法:YC/T 383- 2010. 北京,中国标准出版社,2010. |
[14] |
Wang B, Lewis R S, Shi J L, et al. Genetic factors for enhancement of nicotine levels in cultivated tobacco. Scientific Reports, 2015, 5:17360.
doi: 10.1038/srep17360 pmid: 26626731 |
[15] | Chini A, Fonseca S, Chico J M, et al. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. The Plant Journal for Cell and Molecular Biology, 2009, 59(1):77-87. |
[16] | Yang Y P, Guo J, Yan P C, et al. Transcriptome profiling identified multiple jasmonate ZIM-domain proteins involved in the regulation of alkaloid biosynthesis in tobacco BY-2 cells. Plant Molecular Biology Reporter, 2014, 33(1):153-166. |
[17] | Chini A, Fonseca S, Fernandez G, et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 2007, 448(7154):666-671. |
[18] | Zhao C Y, Geng X Q, Yang Y P, et al. NtAIDP1, a novel NtJAZ interacting protein, binds to an AT-rich region to activate the transcription of jasmonate-inducible genes in tobacco. Journal of Plant Physiology, 2021, 263:153452. |
[19] | Li Z C, Luo X, Ou Y, et al. JASMONATE-ZIM DOMAIN proteins engage Polycomb chromatin modifiers to modulate Jasmonate signaling in Arabidopsis. Molecular Plant, 2021, 14(5):732-747. |
[1] | Zhang Jili, He Jinghao, Wei Jianyu, Huang Chongjun, Wang Wei, Cai Yixia. Effects of Application Period of Microbial Inoculants on Rhizosphere Soil Bacterial Diversity, Enzyme Activity and Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2025, 41(2): 162-171. |
[2] | Li Yunxia, Yang Jiashuo, Li Yangyang, Xiang Shipeng, Yu Jinlong, Li Bin, Zheng Weiwei, Liu Lu. Effects of Different Transplanting Periods on the Growth, Development and Yield Quality of Flue-Cured Tobacco in Tobacco-Rice Rotation Area [J]. Crops, 2025, 41(2): 222-227. |
[3] | Zhu Zijian, Chen Nana, Wu Yueying, Rang Zhongwen, Dai Linjian, Tian Minghui, Tian Feng, Yi Zhenxie. Effects of Nitrogen Application Rate, Planting Density and Retained Leaf Number on Yield and Quality of Xiangyan 7 in Tobacco Region of Western Hunan [J]. Crops, 2025, 41(1): 179-186. |
[4] | Ma Junmei, Dou Min, Liu Di, Yang Xiuhua, Yang Yong, Nian Fuzhao, Liu Yating, Li Yongzhong. Effects of Intercropping Flue-Cured Tobacco and Maize on Rhizosphere Soil Nutrients and Crop Growth [J]. Crops, 2025, 41(1): 227-234. |
[5] | Zhang Ying, Wang Haiyang, Jiang Lin, Guo Xueqing, Zhong Xiaoli, Zhang Xing, Lu Minjiao, Ji Xiaoming, Yang Xiaopeng, Wu Shusong. Comprehensive Evaluation and Spatial Distribution of Soil Fertility Suitability in Changting Tobacco-Growing Area [J]. Crops, 2024, 40(6): 171-178. |
[6] | Cui Hong, Liu Qing, Zhao Xiuzhen, Zong Hao, Li Ying, Shen Lili, Jiao Yubing, Wang Fenglong, Yang Jinguang, Yuan Lianlian. Applied Research of Pseudomonas protegens KBD-3 in Crop Disease Control and Selenium-Enrichment [J]. Crops, 2024, 40(6): 237-241. |
[7] | Li Xinru, Xie Yanfen, Zhu Xuanquan, Wang Ge, Bai Yuxiang, Du Yu, Zhou Peng, Zhao Yuting, Zhu Hongqiong, Yang Fan, Xiao Zhiwen, Wang Wenbo, Fang Zhipeng, Han Jiabao, Wang Na. Soil Quality Evaluation and Its Correlation with Tobacco Leaf Quality under Different Previous Crops [J]. Crops, 2024, 40(5): 167-174. |
[8] | Huang Yanxia, Chen Genhui, Lin Jianfu, Guo Qimao, Huang Kangde, Silang Quncuo, Xie Lijun, Lin Zilong. Study of Highly Efficient Cultivation Technique of Inter Cropping Sweet Potato Longzi 9 in Tobacco Field [J]. Crops, 2024, 40(5): 228-234. |
[9] | Wu Yongbing, Yuan Huaen, Zhang Ying, Chen Yongwei, Yang Weili, He Zhengchuan, Zhao Mingqin. Dynamic Changes in Root Tissue Structure and Root and Above-Ground Growth of Cigar Tobacco at Different Ridge Heights [J]. Crops, 2024, 40(3): 148-155. |
[10] | Jiang Zhiming, Zhang Zhongwen, Zhang Cheng, Zheng Hongbin, Wang Weimin, Li Sijun, Hou Jianlin, Deng Xiaoqiang, Wu Wenxin, Zhu Lin, Deng Yongsheng, Deng Xiaohua. Study on Maturity of One-Time Harvesting of Four Lower Flue-Cured Tobacco Leaves in Tobacco-Rice Rotation Field [J]. Crops, 2024, 40(2): 129-138. |
[11] | Li Sijun, Bi Yiming, Hou Jianlin, Wu Wenxin, Deng Xiaoqiang, Jiang Zhimin, Tian Yunong, Hao Xianwei, Zhang Cheng, Zhu Lin, Xia Bin, Deng Xiaohua. Study on the Flue-Curing Processes in the Intensive Curing House Suitable for the Harvesting at One Time of Six Middle Leaves of Paddy-Tobacco [J]. Crops, 2024, 40(2): 158-164. |
[12] | Xie Jin, Li Jincheng, Liang Zengfa, Huang Hao, Zhang Xi, Gao Renji, Jin Baofeng, Zeng Fandong, Lu Zhiwei, Cai Yixia, Wang Wei. Effects of Ridging Height and Ratio of Organic Fertilizer on Root Growth and Quality of Upper Tobacco Leaves [J]. Crops, 2024, 40(2): 165-171. |
[13] | Duan Junya, Zhao Yuanyuan, Wei Jianyu, Wang Dexun, Wang Zheng, Wang Tingting, Shi Hongzhi. Effects of Foliar Spraying Polyaspartic Acid on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2023, 39(6): 195-201. |
[14] | Liu Chen, Yang Mingfeng, Yang Long, Zhang Nan, Yu Tao. Effects of Wide-Narrow Row Configuration in Double-Row Concave Ridge on Growth and Quality of Upper Leaves of Flue-Cured Tobacco [J]. Crops, 2023, 39(5): 151-156. |
[15] | Liu Xiaomin, Xu Rui, Sun Jingguo, Zhao Fanchong, Si Zhenxing, Liang Zhizhe, Xu Zicheng, Han Dan. The Effects of Well Cellar Depth and Mulching Methods on the Gas- Thermal Environment and Flue-Cured Tobacco Growth and Yield [J]. Crops, 2023, 39(5): 157-163. |
|