作物杂志, 2025, 41(3): 85-91 doi: 10.16035/j.issn.1001-7283.2025.03.012

遗传育种·种质资源·生物技术

苦荞贮存及加工过程中黄酮类成分含量变化和利用研究

徐浪,1,2, 王玉1,2, 王祥儒3, 李红君1, 唐万1, 王冰清1,2, 杨强1, 张帆1,2, 陈志元,1,2, 周美亮,3

1中药保健食品质量与安全湖北省重点实验室(劲牌有限公司),435100,湖北大冶

2劲牌持正堂药业有限公司,435000,湖北黄石

3中国农业科学院作物科学研究所,100081,北京

Study on the Flavonoids Content Changes and Utilization Guidance in Storage and Processing of Tartary Buckwheat

Xu Lang,1,2, Wang Yu1,2, Wang Xiangru3, Li Hongjun1, Tang Wan1, Wang Bingqing1,2, Yang Qiang1, Zhang Fan1,2, Chen Zhiyuan,1,2, Zhou Meiliang,3

1Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food (Jin Brand Co., Ltd.), Daye 435100, Hubei, China

2Jin Brand Chizhengtang Pharmaceutical Co., Ltd., Huangshi 435000, Hubei, China,

3Institue of Crop Sciences, Chinese Academy of Agricutural Sciences, Beijing 100081, China

通讯作者: 陈志元,主要从事植物提取工艺技术研究,E-mail:5780137@qq.com周美亮为共同通信作者,研究方向为荞麦种质资源与遗传育种学,E-mail:zhoumeiliang@caas.cn

收稿日期: 2024-09-13   修回日期: 2024-11-7   网络出版日期: 2025-04-07

基金资助: 湖北省自然科学基金(2022CFB137)

Received: 2024-09-13   Revised: 2024-11-7   Online: 2025-04-07

作者简介 About authors

徐浪,主要从事苦荞提取及应用研究,E-mail:937124210@qq.com

摘要

黄酮类物质是苦荞中主要的生物活性成分。对苦荞麦贮存及加工过程5种黄酮类成分含量进行测定,并对其滋味和生物活性进行研究,结果表明,苦荞在刚成熟时,黄酮苷元类成分含量相对较高,其苦味和涩味相对比较突出,但α-葡萄糖苷酶抑制活性较高;而随着贮存时间的延长以及苦荞米的加工,黄酮苷元类成分转化为糖苷类黄酮,糖苷类黄酮的苦味和涩味减弱,但α-葡萄糖苷酶抑制活性较弱。综上,延长苦荞的贮存时间或者脱壳后的苦荞米,可作为普通食品的原料;以刚成熟苦荞为原料,可以进行功能性食品的加工利用。

关键词: 苦荞; 黄酮; 滋味; 苦味; 涩味; α-葡萄糖苷酶

Abstract

Flavonoids are the main bioactive components in tartary buckwheat. The purpose of this article is to test the content of five flavonoids in the storage and processing of tartary buckwheat, and study the taste and biological activity of five flavonoids. The results showed that the content of flavonoid aglycones was relatively high when tartary buckwheat was newly mature, and its bitterness and astringency were relatively prominent, but the α-glucosidase inhibitory activity was higher. With the extension of storage time and the processing of tartary buckwheat grain, flavonoid aglycones were converted into glycoside flavonoids, and the bitterness and astringency of glycoside flavonoids were weakened, but the α-glucosidase inhibitory activity was weak. In summary, prolonging the storage time of tartary buckwheat, or the dehulled tartary buckwheat grain can used as the raw material of ordinary food. The processing and utilization of functional food can be carried out with new mature tartary buckwheat as raw material.

Keywords: Tartary buckwheat; Flavonoids; Taste; Bitterness; Astringency; α-glucosidase

PDF (492KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

徐浪, 王玉, 王祥儒, 李红君, 唐万, 王冰清, 杨强, 张帆, 陈志元, 周美亮. 苦荞贮存及加工过程中黄酮类成分含量变化和利用研究. 作物杂志, 2025, 41(3): 85-91 doi:10.16035/j.issn.1001-7283.2025.03.012

Xu Lang, Wang Yu, Wang Xiangru, Li Hongjun, Tang Wan, Wang Bingqing, Yang Qiang, Zhang Fan, Chen Zhiyuan, Zhou Meiliang. Study on the Flavonoids Content Changes and Utilization Guidance in Storage and Processing of Tartary Buckwheat. Crops, 2025, 41(3): 85-91 doi:10.16035/j.issn.1001-7283.2025.03.012

荞麦属于蓼科(Polygonaceae)荞麦属(Fagopyrum)的一年生双子叶植物。荞麦主要有2个栽培种,分别是普通荞麦(甜荞,Fagopyrum esculentum Moench)和鞑靼荞麦(苦荞,Fagopyrum tataricum L. Gaerth)。与小麦、大米等大宗粮食作物相比,苦荞除含有较为丰富的淀粉、蛋白质、维生素、微量元素和膳食纤维等营养物质外[1-2],由于苦荞麦能在恶劣的气候和边缘地带生长[2],具有很强的生态适应性和抗逆保护作用,因此荞麦籽粒中往往会积累大量的植物化学物质(多酚类、糖醇类、生物碱及蒽醌类等物质)[3-8]。黄酮类成分是苦荞麦主要的活性物质,具有较好的降血糖、降血脂、抗氧化、增强免疫力、治疗心脑血管疾病等功效[9-12]

与其他大宗粮食作物相比,虽然苦荞富含生物活性物质,但由于苦荞有苦味[13-14],从而限制了其应用和相关产业发展。辛力等[15]研究表明,苦荞麦中的苦味物质是黄酮类成分。从李霞[16]指出,槲皮素具有强烈的苦涩味,影响了人们对含有槲皮素食品的接受度,从而限制了槲皮素在食品方面的应用。抑制α-葡萄糖苷酶活性可起到降血糖作用。本文对苦荞贮存及加工过程中槲皮素- 3-芸香糖苷-7-葡萄糖苷、芦丁、山奈酚-3-O-芸香糖苷、槲皮素和山奈酚5种黄酮类成分的含量变化进行分析,并对其滋味和α-葡萄糖苷酶抑制活性进行研究,从而指导苦荞的加工利用。

1 材料与方法

1.1 试验材料

在四川、云南、贵州和陕西等地区采集刚成熟的苦荞样品,其中四川凉山5份、云南3份、贵州2份、陕西2份,共计12份。于7 d内完成样品黄酮类成分初始含量检测,并贮存于25 ℃、相对湿度60%的密闭环境中。

1.2 仪器与设备

供试仪器有1200型高效液相色谱仪(美国安捷伦科技公司)、AB135-S型电子天平(梅特勒―托利公司)、DNP-9162型热风循环烘箱(上海精宏实验设备有限公司)、KUDOS型超声波清洗仪(上海科导超声仪器有限公司)。

1.3 苦荞中黄酮类成分含量检测

1.3.1 供试品溶液制备

分别精密称定苦荞麦粉末3.0 g,置有塞锥形瓶中,加入50 mL甲醇,称定重量,超声处理(功率250 W,频率25 kHz)30 min,放冷再称定重量,用甲醇补足减失重量,摇匀备用[17]

1.3.2 HPLC对比检测

取供试品溶液进行HPLC,HPLC色谱条件[18]:Sepex C18色谱柱(4.6 mm×250 mm,5 μm),以乙腈-0.1 %磷酸溶液为流动相,按照表1条件进行梯度洗脱。紫外检测器,检测波长为360 nm,流速1.0 mL/min,进样体积10 μL,柱温30 ℃。上述色谱条件下,槲皮素-3-芸香糖苷-7-葡萄糖苷(C1)、芦丁(C2)、山奈酚-3-O-芸香糖苷(C3)、槲皮素(C4)和山奈酚(C5)对照品HPLC色谱图见图1

表1   梯度洗脱表

Table 1  Gradient elution table

时间
Time (min)
乙腈
Acetonitrile (%)
0.1%磷酸溶液
0.1% phosphoric acid solution (%)
01090
202575
404060

新窗口打开| 下载CSV


图1

图1   标准品高效液相色谱图

Fig.1   HPLC of standard substances


1.3.3 苦荞贮存过程中黄酮类成分含量检测

将采集的12份苦荞麦样品于7 d内完成黄酮类成分初始含量检测,并每个地区选取1份样品,贮存于25±2 ℃、相对湿度60%±5%的密闭环境中,分别于1、2、3、6、9和12个月时检测黄酮类成分含量。

1.3.4 苦荞加工过程中黄酮类成分含量检测

苦荞脱壳加工为苦荞米的工艺一般为浸泡、蒸熟、干燥、脱壳等主要步骤,分别取西昌市滋元食品有限公司和云南大初食品有限公司苦荞麦及脱壳后的苦荞米样品各3份,对比检测黄酮类成分含量。同时为验证苦荞麦加工过程中含量变化的原因,取未脱壳苦荞麦样品,使用电磁炉隔水蒸制30 min,再于50 ℃热风循环烘箱中干燥,检测蒸制前后黄酮类成分含量。

1.4 5种黄酮类成分电子舌滋味分析

参考Li等[19]的研究方法并稍作修改。将5种黄酮类成分标准品(中国食品药品检定研究院提供)配制成200 mg/L浓度的30%乙醇溶液,用TS-5000Z型电子舌(日本INSENT公司)进行滋味检测。为了减少环境变化带来的影响,保持电子舌的稳定性,所有样品均在25±1 ℃的条件下检测4次,从每个电子舌传感器中提取响应曲线相对稳定的平均值作为最终结果。

1.5 5种黄酮类成分α-葡萄糖苷酶抑制活性对比

参考文献[20]方法稍作修改。于96孔板中依次加入pH 6.8的0.05 mol/L磷酸钠缓冲液125 μL,各梯度浓度的5种黄酮类成分对照品溶液或阿卡波糖阳性对照25 μL,再对应加入浓度为1 μmol/mL的α-葡萄糖苷酶溶液25 μL,30±1 ℃温育10 min,再迅速加入4-硝基苯基-β-D-吡喃葡萄糖苷(PNPG)溶液25 μL,在30±1 ℃下反应1 h,于405 nm处测定吸光度值,反应过程中每隔2 min测定1次吸光度值。

1.6 数据处理

使用Microsoft Excel 2020对数据进行简单处理,使用Origin 2021软件进行绘图。做3次重复平行测定,结果取平均值。

2 结果与分析

2.1 不同产地新成熟苦荞黄酮类成分含量

苦荞麦中主要黄酮类成分为芦丁,占比约80%[21-24]。由表2可知,新成熟苦荞麦中槲皮素-3-芸香糖苷-7-葡萄糖苷、芦丁、山奈酚-3-O-芸香糖苷、槲皮素和山奈酚平均含量分别为0.021%、0.475%、0.044%、0.649%和0.031%,合计为1.220%,其中芦丁占比38.93%,槲皮素占比53.20%。

表2   不同产地新成熟苦荞麦黄酮类成分含量

Table 2  Contents of flavonoids in newly matured tartary buckwheat from different regions %

省份Province编号Number来源SourceC1C2C3C4C5
四川Sichuan1凉山州喜德县泥波镇0.026±0.0010.554±0.0210.054±0.0020.626±0.0180.028±0.001
2凉山州昭觉县特布洛乡0.019±0.0010.259±0.0080.040±0.0020.772±0.0230.046±0.001
3凉山州美姑县佐戈依达乡0.016±0.0010.270±0.0100.030±0.0020.781±0.0160.037±0.002
4凉山州盐源县棉桠镇0.022±0.0010.451±0.0070.047±0.0020.648±0.0210.046±0.001
5凉山州布拖县特木里乡0.024±0.0010.471±0.0160.048±0.0010.621±0.0230.032±0.003
云南Yunnan6昭通市昭阳区鲁甸县新街镇0.015±0.0010.621±0.0220.040±0.0020.756±0.0170.043±0.002
7昭通市昭阳区青岗岭乡0.032±0.0020.686±0.0190.063±0.0020.645±0.0230.026±0.001
8曲靖市会泽县驾车乡0.024±0.0010.593±0.0170.053±0.0020.714±0.0190.028±0.001
贵州Guizhou9六盘水市盘州市乌蒙镇0.006±0.0000.304±0.0150.016±0.0000.395±0.0080.011±0.000
10毕节市威宁县小海镇0.010±0.0000.416±0.0120.026±0.0010.481±0.0130.017±0.001
陕西Shaanxi11安康市白河县冷水镇0.028±0.0010.491±0.0130.052±0.0010.591±0.0110.032±0.001
12榆林市靖边县乔沟湾镇0.034±0.0010.581±0.0130.061±0.0020.759±0.0210.038±0.001
平均值Mean0.0210.4750.0440.6490.031

新窗口打开| 下载CSV


2.2 不同贮存时间黄酮类成分含量变化

检测苦荞麦5种黄酮类成分含量,并分析贮存过程含量变化规律。因苦荞麦中黄酮苷元和糖苷在酶的作用下可能会存在相互转化的现象[25],因此将5种黄酮类成分分别折算成槲皮素和山奈酚2种苷元,并进行统计分析。

表3可知,苦荞麦中的黄酮类成分在贮存过程中会发生变化,其中C4和C5含量随着时间推移而下降;而槲皮素-3-芸香糖苷-7-葡萄糖苷、芦丁和山奈酚-3-O-芸香糖苷为糖苷类黄酮含量随着时间推移而上升;槲皮素和山奈酚2种苷元相对标准偏差(RSD值)均小于5%,表明其含量在不同贮存时间无明显变化。结果说明苦荞麦在贮存过程中,黄酮苷元类成分会逐渐转化为糖苷类黄酮,其黄酮苷元的总量无明显变化。

表3   苦荞麦不同贮存时间黄酮类成分含量

Table 3  The contents of flavonoids in tartary buckwheat stored in different periods %

编号
Number
来源
Source
时间(月)
Time (month)
C1C2C3C4C5苷元含量Content of aglycone
槲皮素Quercetin山奈酚Kaempferol
1凉山州
盐源县
棉桠镇
初始值0.022±0.0010.45±0.0170.047±0.0020.648±0.0210.046±0.0010.8790.069
10.024±0.0010.62±0.0170.053±0.0020.560±0.0230.041±0.0020.8760.067
30.030±0.0011.12±0.0250.081±0.0030.326±0.0120.029±0.0010.8920.068
60.039±0.0011.20±0.0230.098±0.0030.252±0.0070.023±0.0010.8610.070
90.045±0.0011.34±0.0310.114±0.0030.201±0.0080.013±0.0010.8820.068
120.043±0.0021.35±0.0280.125±0.0380.206±0.0070.008±0.0000.8910.068
RSD值29.1637.9236.9352.5657.161.281.53
2曲靖市
会泽县
驾车乡
初始值0.024±0.0010.59±0.0170.053±0.0020.714±0.0190.028±0.0011.0150.053
10.031±0.0010.73±0.0200.069±0.0010.645±0.0050.021±0.0011.0190.054
30.035±0.0011.06±0.0150.075±0.0020.464±0.0180.016±0.0001.0020.052
60.051±0.0021.23±0.0370.089±0.0020.366±0.0120.009±0.0000.9950.052
90.064±0.0011.51±0.0220.095±0.0020.246±0.0020.007±0.0001.0190.052
120.060±0.0011.53±0.0310.094±0.0030.239±0.0090.007±0.0001.0200.052
RSD值37.2735.3620.9344.9961.021.031.94
3毕节市
威宁县
小海镇
初始值0.010±0.0000.42±0.0120.026±0.0010.481±0.0130.017±0.0010.6910.029
10.015±0.0000.63±0.0080.033±0.0010.371±0.0170.014±0.0000.6890.030
30.027±0.0000.87±0.0150.046±0.0020.240±0.0040.007±0.0000.6810.029
60.033±0.0011.19±0.0310.052±0.0010.101±0.0040.005±0.0000.7030.030
90.039±0.0011.22±0.0280.054±0.0020.071±0.0010.004±0.0000.6900.030
120.040±0.0011.21±0.0330.052±0.0010.066±0.0020.004±0.0000.6810.029
RSD值46.0737.1426.4378.4968.651.181.86
4安康市
白河县
冷水镇
初始值0.028±0.0010.49±0.0130.052±0.0010.591±0.0110.033±0.0010.8450.058
10.034±0.0000.57±0.0090.063±0.0020.542±0.0170.026±0.0010.8370.056
30.047±0.0020.89±0.0210.086±0.0020.372±0.0120.017±0.0010.8310.059
60.055±0.0021.17±0.0170.099±0.0030.243±0.0090.010±0.0000.8440.058
90.062±0.0011.39±0.0350.106±0.0030.135±0.0030.007±0.0000.8470.058
120.065±0.0021.42±0.0270.112±0.0030.131±0.0040.004±0.0000.8590.058
RSD值30.7940.7928.0559.5668.941.141.32

新窗口打开| 下载CSV


2.3 苦荞麦加工过程中黄酮类成分含量变化

表4为苦荞脱壳前后的黄酮类成分含量,其中编号1~3为西昌市滋元食品有限公司苦荞麦样品(表5同),4~6为云南大初食品有限公司苦荞麦样品。结果表明,苦荞麦在脱壳加工为苦荞米的过程中,黄酮苷元C4和C5的含量明显降低,而糖苷类黄酮C1~C3含量明显增加;将5种黄酮类成分折算成槲皮素和山奈酚2种苷元,RSD值均小于5%,表明其含量无明显变化。说明苦荞麦在脱壳加工为苦荞米的过程中,黄酮苷元类成分会转化为糖苷类黄酮,其黄酮苷元的总量无明显变化。

表4   苦荞麦加工过程中黄酮类成分含量变化

Table 4  Changes in flavonoid contents during the processing of tartary buckwheat %

样品编号
Sample number
处理
Treatment
C1C2C3C4C5苷元含量Content of aglycone
槲皮素Quercetin山奈酚Kaempferol
1脱壳前0.057±0.0021.07±0.0130.075±0.0030.319±0.0120.032±0.0010.8710.068
脱壳后0.067±0.0011.65±0.0270.132±0.0020.015±0.0000.003±0.0000.8580.067
RSD值11.4030.1638.94128.72115.201.061.63
2脱壳前0.027±0.0010.65±0.0310.049±0.0010.582±0.0250.044±0.0010.9140.067
脱壳后0.070±0.0011.75±0.0400.125±0.0050.022±0.0010.006±0.0000.9160.067
RSD值62.6964.8261.77131.12105.290.110.75
3脱壳前0.069±0.0021.45±0.0240.117±0.0030.273±0.0040.005±0.0001.0180.061
脱壳后0.072±0.0021.87±0.0370.112±0.0030.025±0.0060.004±0.0000.9790.058
RSD值3.0117.893.09117.6914.632.763.93
4脱壳前0.037±0.0020.89±0.0360.075±0.0010.443±0.0090.016±0.0000.8980.052
脱壳后0.042±0.0021.70±0.0410.101±0.0020.017±0.0010.003±0.0000.8750.052
RSD值8.9544.2320.89130.9796.841.840.11
5脱壳前0.047±0.0010.94±0.0320.087±0.0020.357±0.0080.018±0.0000.8410.060
脱壳后0.062±0.0021.65±0.0440.122±0.0030.014±0.0000.003±0.0000.8550.061
RSD值19.4638.7723.68130.75107.261.201.34
6脱壳前0.050±0.0021.25±0.0370.082±0.0020.347±0.0060.014±0.0000.9850.053
脱壳后0.072±0.0021.83±0.0260.101±0.0020.021±0.0000.003±0.0000.9550.051
RSD值25.5026.6314.68125.2894.282.212.24

新窗口打开| 下载CSV


表5   苦荞麦蒸制后黄酮类成分含量

Table 5  The contents of flavonoids in tartary buckwheat after steaming %

样品编号
Sample number
处理
Treatment
C1C2C3C4C5苷元含量Content of aglycone
槲皮素Quercetin山奈酚Kaempferol
1蒸制前0.057±0.0021.070±0.0130.075±0.0030.319±0.0120.032±0.0010.8710.068
蒸制后0.066±0.0021.690±0.0270.136±0.0020.0000.00000.8620.066
RSD值10.3531.7740.88141.42141.420.703.10
2蒸制前0.027±0.0010.650±0.0310.049±0.0010.582±0.0250.044±0.0010.9140.067
蒸制后0.073±0.0021.800±0.0450.134±0.0050.0000.00000.9200.065
RSD值65.0566.3865.69141.42141.420.412.98
3蒸制前0.069±0.0021.450±0.0240.117±0.0030.273±0.0040.005±0.0001.0180.061
蒸制后0.077±0.0031.970±0.0320.125±0.0030.0000.00001.0050.060
RSD值7.7521.504.68141.42141.420.871.11

新窗口打开| 下载CSV


表5为未脱壳苦荞麦样品蒸制前后黄酮类含量,结果表明,苦荞麦在蒸制后,不含黄酮苷元C4和C5,而糖苷类黄酮C1~C3含量明显增加;将5种黄酮类成分折算成槲皮素和山奈酚2种苷元,RSD值均小于5%,表明其含量基本无变化。结果说明苦荞麦在蒸制过程中,黄酮苷元类成分完全转化为糖苷类黄酮,黄酮苷元的总量无变化,推测苦荞麦脱壳加工为苦荞米是在蒸熟过程中发生了黄酮苷元类成分转化为糖苷类黄酮的反应。

2.4 5种黄酮类成分电子舌滋味分析

图2可知,5种黄酮类成分在苦味、涩味、后苦味、后涩味以及酸味上有一定差异,其中C4和C5的苦味、涩味、后苦味以及后涩味值均高于C1~C3,酸味值则是前者低于后者。结果说明苦荞麦中的黄酮苷元类成分的苦味和涩味值高于糖苷类黄酮。

图2

图2   5种黄酮类成分滋味轮廓图

Fig.2   Taste contour map of five flavonoids contents


2.5 苦荞麦中黄酮类成分α-葡萄糖苷酶抑制活性对比

图3可知,5种黄酮类成分对α-葡萄糖苷酶的抑制活性有较大差异,其中C4~C5随着样品浓度的增加,对α-葡萄糖苷酶的抑制活性也随之增加,阳性对照阿卡波糖、槲皮素和山奈酚抑制α-葡萄糖苷酶活性的半抑制浓度(IC50)分别为9.23、0.15和0.16 mg/mL,槲皮素和山奈酚的α-葡萄糖苷酶抑制活性明显高于阳性对照阿卡波糖。而C1~C3在该浓度范围内则对α-葡萄糖苷酶几乎无抑制活性。结果表明,苦荞麦的5种黄酮类成分中,苷元类黄酮槲皮素和山奈酚的α-葡萄糖苷酶抑制活性明显高于糖苷类黄酮槲皮素-3-芸香糖苷-7-葡萄糖苷、芦丁和山奈酚-3-O-芸香糖苷。

图3

图3   苦荞中黄酮类成分α-葡萄糖苷酶抑制活性对比

Fig.3   Comparison of α-glucosidase inhibitory activity of flavonoids in tartary buckwheat


3 讨论

苦荞麦作为一种重要的杂粮作物,除含有较丰富的淀粉、蛋白质、维生素、微量元素和膳食纤维等营养物质外[1-2],还含有其他谷物所欠缺的生物活性成分[3-8],而黄酮类物质是其主要的生物活性成分,主要包含槲皮素、山奈酚及其糖苷类成分(如芦丁、槲皮素-3-芸香糖苷-7-葡萄糖苷、山奈酚-3-O-芸香糖苷等)[26-28],具有多种生理功能。因此,苦荞麦不仅可用于普通食品,还具有保健食品开发前景[29]。本研究对新成熟苦荞及其贮存加工过程中5种黄酮类成分含量进行测定,新成熟苦荞麦中黄酮苷元类成分(槲皮素和山奈酚)含量相对较高,而在贮存以及苦荞米蒸熟加工过程中,则会转化为糖苷类黄酮(槲皮素-3-芸香糖苷-7-葡萄糖苷、芦丁和山奈酚-3-O-芸香糖苷)。本文对苦荞麦中5种黄酮类成分的滋味和α-葡萄糖苷酶抑制活性进行研究,黄酮苷元类成分(槲皮素和山奈酚)的苦味及涩味值高于糖苷类黄酮(槲皮素-3-芸香糖苷-7-葡萄糖苷、芦丁和山奈酚-3-O-芸香糖苷),同时α-葡萄糖苷酶抑制活性也是前者也高于后者。本研究结果表明,苦荞麦在新成熟时,黄酮苷元类成分含量相对较高,其苦味和涩味比较突出,α-葡萄糖苷酶抑制活性较高;而随着贮存时间的延长以及苦荞米的加工,黄酮苷元类成分转化为糖苷类黄酮,糖苷类黄酮的苦味和涩味减弱,α-葡萄糖苷酶抑制活性较弱。

因此,本研究结果可以对苦荞加工利用提供参考,如以苦荞粉、苦荞面、苦荞饼和苦荞沙琪玛等普通食品食用,可延长苦荞麦的贮存时间。以脱壳后的苦荞米进行加工食用,可降低黄酮苷元的含量,从而减少苦味和涩味等不良滋味;以苦荞茶、苦荞酒、苦荞胶囊等功能性食品应用,新成熟苦荞麦中黄酮苷元含量较高,其生物活性强,因此可以新成熟苦荞麦为原料进行加工利用。本文在研究滋味和α-葡萄糖苷酶抑制活性时,以5种黄酮类成分标准品作为研究对象,不能完全推断苦荞麦不同贮存时间的滋味和生物活性,下一步将进行不同贮存时间苦荞麦和加工后的苦荞米的滋味及生物活性研究,对本文研究内容和结论进行验证。

4 结论

对苦荞麦贮存及加工过程5种黄酮类成分含量进行测定及分析,并对5种黄酮类成分的滋味和α-葡萄糖苷酶抑制活性进行研究。苦荞麦在新成熟时,黄酮苷元类成分含量相对较高,黄酮苷元类成分的苦味和涩味相对比较突出,α-葡萄糖苷酶抑制活性较高;而随着贮存时间的延长以及苦荞米的加工,黄酮类苷元类成分转化为糖苷类黄酮,糖苷类黄酮的苦味和涩味减弱,α-葡萄糖苷酶抑制活性较弱。结果表明,延长苦荞麦的贮存时间可减少苦味,脱壳后的苦荞米可作为普通食品的原料;新成熟苦荞麦为原料可以进行功能性食品的加工利用。

参考文献

赵钢, 唐宇, 王安虎.

苦荞的成分功能研究与开发应用

四川农业大学学报, 2017, 19(4):355-358,368.

[本文引用: 2]

任长忠, 陈庆富, 李洪有, .

苦荞种植资源评价及遗传育种研究展望

西北植物学报, 2023, 43(7):1251-1260.

[本文引用: 3]

吴立根, 屈凌波, 王岸娜, .

荞麦营养功能特性及相关食品开发研究进展

粮油食品科技, 2018, 26(3):41-44.

[本文引用: 2]

Gimenez-Bastida J A, Zielenski H.

Buckwheat as a functional food and its effects on health

Journal of Agricultural and Food Chemistry, 2015, 63(36):7896-7913.

Li S Q, Zhang Q H.

Advances in the development of functional foods from buckwheat

Critical Reviews in Food Science and Nutrition, 2001, 41(6):451-464.

DOI:10.1080/20014091091887      PMID:11592684     

Buckwheat originated in North or East Asia and is widely adapted in North America. It has been grown since at least 1000 BC in China. It has very strong adaptability to adverse environments with a very short growing span. Many varieties are growing around the world, but mainly in the north hemisphere. Currently the most common buckwheat spice is Fagopyrum esculentum Moench (common buckwheat or sweet buckwheat), while Fagopyrum tartaricum is also available in some mountainous regions. Many nutraceutical compounds exist in buckwheat seeds and other tissues. Buckwheat has been used and will be better used as an important raw material for functional food production. In this review we focus on works related to the development of functional foods from common buckwheat, Fagopyrum esculentum Moench. A lot of research has be conducted in the functionalities and properties of buckwheat proteins, flavonoids, flavones, phytosterols, thiamin-binding proteins, and other rare compounds in buckwheat seeds. Buckwheat proteins have unique amino acid composition with special biological activities of cholesterol-lowering effects, antihypertensition effects, and improving the constipation and obisity conditions by acting similar as to dietary fiber and interrupting the in vivo metabolisms. The trypsin inhibitors isolated from buckwheat seeds are heat stable and can cause poor digestion if they are not suitably cooked before consumption. The allergenic proteins existing in the buckwheat seeds and their derivatives were reviewed with respect to their chemical and biochemical characteristics as well as the physiological reactions after digestion. Some possible mechanisms involved in these effects are discussed in this review. Experiments, both with animal models and with human beings, revealed that buckwheat flour can improve diabetes, obesity, hypertension, hypercholesterolemia and constipation. Methods to exploit buckwheat seeds and flour to produce highly effective nutraceuticals are also reviewed.

张波波. 基于AMPK通路的D-手性肌醇改善血管内皮功能紊乱机制研究. 杨凌:西北农林科技大学, 2017.

朱瑞雪. HPLC-FLD检测荞麦中D-荞麦碱的方法研究. 杨凌:西北农林科技大学, 2017.

Yang W, Su Y, Dong G Q, et al.

Liquid chromatography-mass spectrometry-based metabolomics analysis of flavonoids and anthraquinones in Fagopyrum tataricum L. Gaertn. (tartary buckwheat) seeds to trace morphological variations

Food Chemistry, 2020,331:127354.

[本文引用: 2]

Zhong L Y, Lin Y J, Wang C, et al.

Chemical profile, antimicrobial and antioxidant activity assessment of the crude extrcat and its main flavonoids from tartary buckwheat sprouts

Molecules, 2022, 27(2):374.

[本文引用: 1]

Park B I, Kim J, Lee K, et al.

Flavonoids in common and tartary buckwheat hull extracts and antioxidant activity of the extracts against lipids in mayonnaise

Journal of Food Science and Technology, 2019, 56(5):2712-2720.

DOI:10.1007/s13197-019-03761-2      PMID:31168153     

Buckwheat hulls, generally discarded as waste, have been known to possess various flavonoids and high antioxidant activities. The objective of this study was to determine effect of extracting solvents [water, ethanol (20%, 50%, 80%, and 100%), methanol, and acetone] on total phenolic content, flavonoid content and composition, and antioxidant activities of common and tartary buckwheat hull extracts. Antioxidative effect of common and tartary buckwheat hull extracts on lipids in mayonnaise was also investigated. Vitexin, isovitexin, isoorientin, orientin, rutin, isoquercetin, and quercetin were identified in the common buckwheat hull extracts, while rutin, quercetin, isoorientin, and isoquercetin were in the tartary buckwheat hull extracts. The methanol and 80% ethanol extracts had more flavonoids than the others, while the aqueous ethanol extracts from both of the hulls had more total phenolics and antioxidant activities. Oxidative stability of lipids in mayonnaises added with common and tartary buckwheat hull extracts (0.02 and 0.08%, w/w) prepared by 50% ethanol were higher than that in the mayonnaise with butylated hydroxytoluene (0.02%) and control. Oxidative stability was not significantly different between the mayonnaises added with the two buckwheat hull extracts.

Peng W P, Wang N, Wang S M, et al.

Effect of co-treatment of microwave and exogenous L-phenylalanine on the enrichment of flavonoids in Tartary buckwheat sprouts

Journal of the Science of Food and Agriculture, 2023, 103(4):2014-2022.

李丹, 肖刚, 丁霄霖.

苦荞黄酮抗氧化作用的研究

无锡轻工大学学报, 2001, 20(1):44-47.

[本文引用: 1]

姚佳, 靳秔, 贾健斌.

苦荞黄酮及其生理功能的研究进展

食品科技, 2014, 39(10):194-197.

[本文引用: 1]

胡建平, 张忠, 姚翠.

苦荞保健面包的研制

食品工业, 2006 (6):21-22.

[本文引用: 1]

辛力, 肖华志, 胡肖松.

苦荞麦苦味物质与呈色物质的鉴定

杂粮作物, 2004, 24(2):86-87.

[本文引用: 1]

从李霞. 多糖修饰脂质体对掩蔽槲皮素苦味的研究. 南京:南京林业大学, 2023.

[本文引用: 1]

国家药典委员会. 中华人民共和国药典一部. 北京: 中国医药科技出版社,2020:370.

[本文引用: 1]

王玉, 张继斌, 陈志元, . 一种苦荞提取物的鉴别方法:202010564543.1. 2020-08-14.

[本文引用: 1]

Li C S, Yang D Q, Li L H, et al.

Comparison of the taste mechanisms of umami and bitter peptides from fermented mandarin fish (Chouguiyu) based on molecular docking and eletronic tongue technology

Food & Function, 2023, 14(21):9671-9680.

[本文引用: 1]

Kumar D, Kumar H, Vedasiromoni J R, et al.

Bio-assay guided isolation of α-glucosidase inhibitory constituents from Hibiscus mutabilis leaves

Phytochemical Analysis, 2012, 23(5):421-425.

DOI:10.1002/pca.1375      PMID:22161959      [本文引用: 1]

The increasing demand for natural-product-based medicines and health-care products for the management of diabetes encouraged investigation of this commonly available Indian plant.To establish the anti-diabetic (α-glucosidase inhibitory) activity of H. mutabilis leaf extract, isolate and identify the constituents responsible for the activity, and validate a HPLC method for quantification of the active constituents for standardisation of the extract.The methanolic extract of leaves was partitioned between water, n-butanol and ethyl acetate. Bio-assay guided fractionation, based on inhibition of α-glucosidase, allowed isolation and identification of the active components. The active components were quantified using RP-HPLC-DAD validated for linearity, limit of detection, limit of quantification, precision, accuracy and robustness for this plant extract and the partitioned fractions.Ferulic acid and caffeic acid were identified as the α-glucosidase inhibitors present in H. mutabilis. They were partitioned into an ethyl acetate fraction. The HPLC-DAD calibration curve showed good linearity (r² > 0.99). For the recovery studies the %RSD was less than 2%. The interday and intraday variations were found to be less than 4% RSD for retention time and response.The identification of α-glucosidase inhibition activity in H. mutabilis supports further investigations into the possible use of the plant for the management of diabetes. The HPLC method validated for these extracts will be useful in future research with the plant.Copyright © 2011 John Wiley & Sons, Ltd.

陈勇, 张晴.

羟基黄酮的药理学研究近况

中草药, 1998, 29(8):569-570.

[本文引用: 1]

刘诗平, 陈尚猛, 朱卫东.

槲皮素及其衍生物的生物活性研究进展

中草药, 1991, 22(4):182-184.

章洁琼, 邹军, 卢扬, .

不同荞麦品种主要功能成分分析及评价

种子, 2020, 39(2):107-112.

王迪, 邓放, 李阳倩, .

UPLC-QQQ/MS法分析比较不同品种苦荞麦代表性成分含量

粮食与油脂, 2021, 34(9):63-64.

[本文引用: 1]

张玉玮, 李洁, 袁勇, .

苦荞籽粒芦丁降解酶的纯化、酶学性质及部分一级结构分析

生物工程学报, 2017, 33(5):796-807.

[本文引用: 1]

朱瑞, 高南南, 陈健民.

苦荞麦的化学成分和药理作用

中国野生植物资源, 2003, 22(2):7-9.

[本文引用: 1]

Mitsuru W, Yasuo O, Tojiro T.

Antioxidant compounds from buckwheat (Fagopyrum esculentum Moench) Hulls

Journal of Agricultural and Food Chemistry, 1997,45:1039-1044.

甄云鹏. 苦荞壳中黄酮类化合物提前、纯化与其组分分离、测定. 成都:成都理工大学, 2007.

[本文引用: 1]

闫文杰, 段昊, 吕燕妮, .

苦荞在我国保健食品中的应用进展

食品科技, 2021, 46(6):55-60.

[本文引用: 1]

/