苦荞贮存及加工过程中黄酮类成分含量变化和利用研究
Study on the Flavonoids Content Changes and Utilization Guidance in Storage and Processing of Tartary Buckwheat
通讯作者:
收稿日期: 2024-09-13 修回日期: 2024-11-7 网络出版日期: 2025-04-07
基金资助: |
|
Received: 2024-09-13 Revised: 2024-11-7 Online: 2025-04-07
作者简介 About authors
徐浪,主要从事苦荞提取及应用研究,E-mail:
黄酮类物质是苦荞中主要的生物活性成分。对苦荞麦贮存及加工过程5种黄酮类成分含量进行测定,并对其滋味和生物活性进行研究,结果表明,苦荞在刚成熟时,黄酮苷元类成分含量相对较高,其苦味和涩味相对比较突出,但α-葡萄糖苷酶抑制活性较高;而随着贮存时间的延长以及苦荞米的加工,黄酮苷元类成分转化为糖苷类黄酮,糖苷类黄酮的苦味和涩味减弱,但α-葡萄糖苷酶抑制活性较弱。综上,延长苦荞的贮存时间或者脱壳后的苦荞米,可作为普通食品的原料;以刚成熟苦荞为原料,可以进行功能性食品的加工利用。
关键词:
Flavonoids are the main bioactive components in tartary buckwheat. The purpose of this article is to test the content of five flavonoids in the storage and processing of tartary buckwheat, and study the taste and biological activity of five flavonoids. The results showed that the content of flavonoid aglycones was relatively high when tartary buckwheat was newly mature, and its bitterness and astringency were relatively prominent, but the α-glucosidase inhibitory activity was higher. With the extension of storage time and the processing of tartary buckwheat grain, flavonoid aglycones were converted into glycoside flavonoids, and the bitterness and astringency of glycoside flavonoids were weakened, but the α-glucosidase inhibitory activity was weak. In summary, prolonging the storage time of tartary buckwheat, or the dehulled tartary buckwheat grain can used as the raw material of ordinary food. The processing and utilization of functional food can be carried out with new mature tartary buckwheat as raw material.
Keywords:
本文引用格式
徐浪, 王玉, 王祥儒, 李红君, 唐万, 王冰清, 杨强, 张帆, 陈志元, 周美亮.
Xu Lang, Wang Yu, Wang Xiangru, Li Hongjun, Tang Wan, Wang Bingqing, Yang Qiang, Zhang Fan, Chen Zhiyuan, Zhou Meiliang.
荞麦属于蓼科(Polygonaceae)荞麦属(Fagopyrum)的一年生双子叶植物。荞麦主要有2个栽培种,分别是普通荞麦(甜荞,Fagopyrum esculentum Moench)和鞑靼荞麦(苦荞,Fagopyrum tataricum L. Gaerth)。与小麦、大米等大宗粮食作物相比,苦荞除含有较为丰富的淀粉、蛋白质、维生素、微量元素和膳食纤维等营养物质外[1-2],由于苦荞麦能在恶劣的气候和边缘地带生长[2],具有很强的生态适应性和抗逆保护作用,因此荞麦籽粒中往往会积累大量的植物化学物质(多酚类、糖醇类、生物碱及蒽醌类等物质)[3
1 材料与方法
1.1 试验材料
在四川、云南、贵州和陕西等地区采集刚成熟的苦荞样品,其中四川凉山5份、云南3份、贵州2份、陕西2份,共计12份。于7 d内完成样品黄酮类成分初始含量检测,并贮存于25 ℃、相对湿度60%的密闭环境中。
1.2 仪器与设备
供试仪器有1200型高效液相色谱仪(美国安捷伦科技公司)、AB135-S型电子天平(梅特勒―托利公司)、DNP-9162型热风循环烘箱(上海精宏实验设备有限公司)、KUDOS型超声波清洗仪(上海科导超声仪器有限公司)。
1.3 苦荞中黄酮类成分含量检测
1.3.1 供试品溶液制备
分别精密称定苦荞麦粉末3.0 g,置有塞锥形瓶中,加入50 mL甲醇,称定重量,超声处理(功率250 W,频率25 kHz)30 min,放冷再称定重量,用甲醇补足减失重量,摇匀备用[17]。
1.3.2 HPLC对比检测
表1 梯度洗脱表
Table 1
时间 Time (min) | 乙腈 Acetonitrile (%) | 0.1%磷酸溶液 0.1% phosphoric acid solution (%) |
---|---|---|
0 | 10 | 90 |
20 | 25 | 75 |
40 | 40 | 60 |
图1
1.3.3 苦荞贮存过程中黄酮类成分含量检测
将采集的12份苦荞麦样品于7 d内完成黄酮类成分初始含量检测,并每个地区选取1份样品,贮存于25±2 ℃、相对湿度60%±5%的密闭环境中,分别于1、2、3、6、9和12个月时检测黄酮类成分含量。
1.3.4 苦荞加工过程中黄酮类成分含量检测
苦荞脱壳加工为苦荞米的工艺一般为浸泡、蒸熟、干燥、脱壳等主要步骤,分别取西昌市滋元食品有限公司和云南大初食品有限公司苦荞麦及脱壳后的苦荞米样品各3份,对比检测黄酮类成分含量。同时为验证苦荞麦加工过程中含量变化的原因,取未脱壳苦荞麦样品,使用电磁炉隔水蒸制30 min,再于50 ℃热风循环烘箱中干燥,检测蒸制前后黄酮类成分含量。
1.4 5种黄酮类成分电子舌滋味分析
参考Li等[19]的研究方法并稍作修改。将5种黄酮类成分标准品(中国食品药品检定研究院提供)配制成200 mg/L浓度的30%乙醇溶液,用TS-5000Z型电子舌(日本INSENT公司)进行滋味检测。为了减少环境变化带来的影响,保持电子舌的稳定性,所有样品均在25±1 ℃的条件下检测4次,从每个电子舌传感器中提取响应曲线相对稳定的平均值作为最终结果。
1.5 5种黄酮类成分α-葡萄糖苷酶抑制活性对比
参考文献[20]方法稍作修改。于96孔板中依次加入pH 6.8的0.05 mol/L磷酸钠缓冲液125 μL,各梯度浓度的5种黄酮类成分对照品溶液或阿卡波糖阳性对照25 μL,再对应加入浓度为1 μmol/mL的α-葡萄糖苷酶溶液25 μL,30±1 ℃温育10 min,再迅速加入4-硝基苯基-β-D-吡喃葡萄糖苷(PNPG)溶液25 μL,在30±1 ℃下反应1 h,于405 nm处测定吸光度值,反应过程中每隔2 min测定1次吸光度值。
1.6 数据处理
使用Microsoft Excel 2020对数据进行简单处理,使用Origin 2021软件进行绘图。做3次重复平行测定,结果取平均值。
2 结果与分析
2.1 不同产地新成熟苦荞黄酮类成分含量
表2 不同产地新成熟苦荞麦黄酮类成分含量
Table 2
省份Province | 编号Number | 来源Source | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|---|---|
四川Sichuan | 1 | 凉山州喜德县泥波镇 | 0.026±0.001 | 0.554±0.021 | 0.054±0.002 | 0.626±0.018 | 0.028±0.001 |
2 | 凉山州昭觉县特布洛乡 | 0.019±0.001 | 0.259±0.008 | 0.040±0.002 | 0.772±0.023 | 0.046±0.001 | |
3 | 凉山州美姑县佐戈依达乡 | 0.016±0.001 | 0.270±0.010 | 0.030±0.002 | 0.781±0.016 | 0.037±0.002 | |
4 | 凉山州盐源县棉桠镇 | 0.022±0.001 | 0.451±0.007 | 0.047±0.002 | 0.648±0.021 | 0.046±0.001 | |
5 | 凉山州布拖县特木里乡 | 0.024±0.001 | 0.471±0.016 | 0.048±0.001 | 0.621±0.023 | 0.032±0.003 | |
云南Yunnan | 6 | 昭通市昭阳区鲁甸县新街镇 | 0.015±0.001 | 0.621±0.022 | 0.040±0.002 | 0.756±0.017 | 0.043±0.002 |
7 | 昭通市昭阳区青岗岭乡 | 0.032±0.002 | 0.686±0.019 | 0.063±0.002 | 0.645±0.023 | 0.026±0.001 | |
8 | 曲靖市会泽县驾车乡 | 0.024±0.001 | 0.593±0.017 | 0.053±0.002 | 0.714±0.019 | 0.028±0.001 | |
贵州Guizhou | 9 | 六盘水市盘州市乌蒙镇 | 0.006±0.000 | 0.304±0.015 | 0.016±0.000 | 0.395±0.008 | 0.011±0.000 |
10 | 毕节市威宁县小海镇 | 0.010±0.000 | 0.416±0.012 | 0.026±0.001 | 0.481±0.013 | 0.017±0.001 | |
陕西Shaanxi | 11 | 安康市白河县冷水镇 | 0.028±0.001 | 0.491±0.013 | 0.052±0.001 | 0.591±0.011 | 0.032±0.001 |
12 | 榆林市靖边县乔沟湾镇 | 0.034±0.001 | 0.581±0.013 | 0.061±0.002 | 0.759±0.021 | 0.038±0.001 | |
平均值Mean | 0.021 | 0.475 | 0.044 | 0.649 | 0.031 |
2.2 不同贮存时间黄酮类成分含量变化
检测苦荞麦5种黄酮类成分含量,并分析贮存过程含量变化规律。因苦荞麦中黄酮苷元和糖苷在酶的作用下可能会存在相互转化的现象[25],因此将5种黄酮类成分分别折算成槲皮素和山奈酚2种苷元,并进行统计分析。
由表3可知,苦荞麦中的黄酮类成分在贮存过程中会发生变化,其中C4和C5含量随着时间推移而下降;而槲皮素-3-芸香糖苷-7-葡萄糖苷、芦丁和山奈酚-3-O-芸香糖苷为糖苷类黄酮含量随着时间推移而上升;槲皮素和山奈酚2种苷元相对标准偏差(RSD值)均小于5%,表明其含量在不同贮存时间无明显变化。结果说明苦荞麦在贮存过程中,黄酮苷元类成分会逐渐转化为糖苷类黄酮,其黄酮苷元的总量无明显变化。
表3 苦荞麦不同贮存时间黄酮类成分含量
Table 3
编号 Number | 来源 Source | 时间(月) Time (month) | C1 | C2 | C3 | C4 | C5 | 苷元含量Content of aglycone | |
---|---|---|---|---|---|---|---|---|---|
槲皮素Quercetin | 山奈酚Kaempferol | ||||||||
1 | 凉山州 盐源县 棉桠镇 | 初始值 | 0.022±0.001 | 0.45±0.017 | 0.047±0.002 | 0.648±0.021 | 0.046±0.001 | 0.879 | 0.069 |
1 | 0.024±0.001 | 0.62±0.017 | 0.053±0.002 | 0.560±0.023 | 0.041±0.002 | 0.876 | 0.067 | ||
3 | 0.030±0.001 | 1.12±0.025 | 0.081±0.003 | 0.326±0.012 | 0.029±0.001 | 0.892 | 0.068 | ||
6 | 0.039±0.001 | 1.20±0.023 | 0.098±0.003 | 0.252±0.007 | 0.023±0.001 | 0.861 | 0.070 | ||
9 | 0.045±0.001 | 1.34±0.031 | 0.114±0.003 | 0.201±0.008 | 0.013±0.001 | 0.882 | 0.068 | ||
12 | 0.043±0.002 | 1.35±0.028 | 0.125±0.038 | 0.206±0.007 | 0.008±0.000 | 0.891 | 0.068 | ||
RSD值 | 29.16 | 37.92 | 36.93 | 52.56 | 57.16 | 1.28 | 1.53 | ||
2 | 曲靖市 会泽县 驾车乡 | 初始值 | 0.024±0.001 | 0.59±0.017 | 0.053±0.002 | 0.714±0.019 | 0.028±0.001 | 1.015 | 0.053 |
1 | 0.031±0.001 | 0.73±0.020 | 0.069±0.001 | 0.645±0.005 | 0.021±0.001 | 1.019 | 0.054 | ||
3 | 0.035±0.001 | 1.06±0.015 | 0.075±0.002 | 0.464±0.018 | 0.016±0.000 | 1.002 | 0.052 | ||
6 | 0.051±0.002 | 1.23±0.037 | 0.089±0.002 | 0.366±0.012 | 0.009±0.000 | 0.995 | 0.052 | ||
9 | 0.064±0.001 | 1.51±0.022 | 0.095±0.002 | 0.246±0.002 | 0.007±0.000 | 1.019 | 0.052 | ||
12 | 0.060±0.001 | 1.53±0.031 | 0.094±0.003 | 0.239±0.009 | 0.007±0.000 | 1.020 | 0.052 | ||
RSD值 | 37.27 | 35.36 | 20.93 | 44.99 | 61.02 | 1.03 | 1.94 | ||
3 | 毕节市 威宁县 小海镇 | 初始值 | 0.010±0.000 | 0.42±0.012 | 0.026±0.001 | 0.481±0.013 | 0.017±0.001 | 0.691 | 0.029 |
1 | 0.015±0.000 | 0.63±0.008 | 0.033±0.001 | 0.371±0.017 | 0.014±0.000 | 0.689 | 0.030 | ||
3 | 0.027±0.000 | 0.87±0.015 | 0.046±0.002 | 0.240±0.004 | 0.007±0.000 | 0.681 | 0.029 | ||
6 | 0.033±0.001 | 1.19±0.031 | 0.052±0.001 | 0.101±0.004 | 0.005±0.000 | 0.703 | 0.030 | ||
9 | 0.039±0.001 | 1.22±0.028 | 0.054±0.002 | 0.071±0.001 | 0.004±0.000 | 0.690 | 0.030 | ||
12 | 0.040±0.001 | 1.21±0.033 | 0.052±0.001 | 0.066±0.002 | 0.004±0.000 | 0.681 | 0.029 | ||
RSD值 | 46.07 | 37.14 | 26.43 | 78.49 | 68.65 | 1.18 | 1.86 | ||
4 | 安康市 白河县 冷水镇 | 初始值 | 0.028±0.001 | 0.49±0.013 | 0.052±0.001 | 0.591±0.011 | 0.033±0.001 | 0.845 | 0.058 |
1 | 0.034±0.000 | 0.57±0.009 | 0.063±0.002 | 0.542±0.017 | 0.026±0.001 | 0.837 | 0.056 | ||
3 | 0.047±0.002 | 0.89±0.021 | 0.086±0.002 | 0.372±0.012 | 0.017±0.001 | 0.831 | 0.059 | ||
6 | 0.055±0.002 | 1.17±0.017 | 0.099±0.003 | 0.243±0.009 | 0.010±0.000 | 0.844 | 0.058 | ||
9 | 0.062±0.001 | 1.39±0.035 | 0.106±0.003 | 0.135±0.003 | 0.007±0.000 | 0.847 | 0.058 | ||
12 | 0.065±0.002 | 1.42±0.027 | 0.112±0.003 | 0.131±0.004 | 0.004±0.000 | 0.859 | 0.058 | ||
RSD值 | 30.79 | 40.79 | 28.05 | 59.56 | 68.94 | 1.14 | 1.32 |
2.3 苦荞麦加工过程中黄酮类成分含量变化
表4 苦荞麦加工过程中黄酮类成分含量变化
Table 4
样品编号 Sample number | 处理 Treatment | C1 | C2 | C3 | C4 | C5 | 苷元含量Content of aglycone | |
---|---|---|---|---|---|---|---|---|
槲皮素Quercetin | 山奈酚Kaempferol | |||||||
1 | 脱壳前 | 0.057±0.002 | 1.07±0.013 | 0.075±0.003 | 0.319±0.012 | 0.032±0.001 | 0.871 | 0.068 |
脱壳后 | 0.067±0.001 | 1.65±0.027 | 0.132±0.002 | 0.015±0.000 | 0.003±0.000 | 0.858 | 0.067 | |
RSD值 | 11.40 | 30.16 | 38.94 | 128.72 | 115.20 | 1.06 | 1.63 | |
2 | 脱壳前 | 0.027±0.001 | 0.65±0.031 | 0.049±0.001 | 0.582±0.025 | 0.044±0.001 | 0.914 | 0.067 |
脱壳后 | 0.070±0.001 | 1.75±0.040 | 0.125±0.005 | 0.022±0.001 | 0.006±0.000 | 0.916 | 0.067 | |
RSD值 | 62.69 | 64.82 | 61.77 | 131.12 | 105.29 | 0.11 | 0.75 | |
3 | 脱壳前 | 0.069±0.002 | 1.45±0.024 | 0.117±0.003 | 0.273±0.004 | 0.005±0.000 | 1.018 | 0.061 |
脱壳后 | 0.072±0.002 | 1.87±0.037 | 0.112±0.003 | 0.025±0.006 | 0.004±0.000 | 0.979 | 0.058 | |
RSD值 | 3.01 | 17.89 | 3.09 | 117.69 | 14.63 | 2.76 | 3.93 | |
4 | 脱壳前 | 0.037±0.002 | 0.89±0.036 | 0.075±0.001 | 0.443±0.009 | 0.016±0.000 | 0.898 | 0.052 |
脱壳后 | 0.042±0.002 | 1.70±0.041 | 0.101±0.002 | 0.017±0.001 | 0.003±0.000 | 0.875 | 0.052 | |
RSD值 | 8.95 | 44.23 | 20.89 | 130.97 | 96.84 | 1.84 | 0.11 | |
5 | 脱壳前 | 0.047±0.001 | 0.94±0.032 | 0.087±0.002 | 0.357±0.008 | 0.018±0.000 | 0.841 | 0.060 |
脱壳后 | 0.062±0.002 | 1.65±0.044 | 0.122±0.003 | 0.014±0.000 | 0.003±0.000 | 0.855 | 0.061 | |
RSD值 | 19.46 | 38.77 | 23.68 | 130.75 | 107.26 | 1.20 | 1.34 | |
6 | 脱壳前 | 0.050±0.002 | 1.25±0.037 | 0.082±0.002 | 0.347±0.006 | 0.014±0.000 | 0.985 | 0.053 |
脱壳后 | 0.072±0.002 | 1.83±0.026 | 0.101±0.002 | 0.021±0.000 | 0.003±0.000 | 0.955 | 0.051 | |
RSD值 | 25.50 | 26.63 | 14.68 | 125.28 | 94.28 | 2.21 | 2.24 |
表5 苦荞麦蒸制后黄酮类成分含量
Table 5
样品编号 Sample number | 处理 Treatment | C1 | C2 | C3 | C4 | C5 | 苷元含量Content of aglycone | |
---|---|---|---|---|---|---|---|---|
槲皮素Quercetin | 山奈酚Kaempferol | |||||||
1 | 蒸制前 | 0.057±0.002 | 1.070±0.013 | 0.075±0.003 | 0.319±0.012 | 0.032±0.001 | 0.871 | 0.068 |
蒸制后 | 0.066±0.002 | 1.690±0.027 | 0.136±0.002 | 0.000 | 0.0000 | 0.862 | 0.066 | |
RSD值 | 10.35 | 31.77 | 40.88 | 141.42 | 141.42 | 0.70 | 3.10 | |
2 | 蒸制前 | 0.027±0.001 | 0.650±0.031 | 0.049±0.001 | 0.582±0.025 | 0.044±0.001 | 0.914 | 0.067 |
蒸制后 | 0.073±0.002 | 1.800±0.045 | 0.134±0.005 | 0.000 | 0.0000 | 0.920 | 0.065 | |
RSD值 | 65.05 | 66.38 | 65.69 | 141.42 | 141.42 | 0.41 | 2.98 | |
3 | 蒸制前 | 0.069±0.002 | 1.450±0.024 | 0.117±0.003 | 0.273±0.004 | 0.005±0.000 | 1.018 | 0.061 |
蒸制后 | 0.077±0.003 | 1.970±0.032 | 0.125±0.003 | 0.000 | 0.0000 | 1.005 | 0.060 | |
RSD值 | 7.75 | 21.50 | 4.68 | 141.42 | 141.42 | 0.87 | 1.11 |
表5为未脱壳苦荞麦样品蒸制前后黄酮类含量,结果表明,苦荞麦在蒸制后,不含黄酮苷元C4和C5,而糖苷类黄酮C1~C3含量明显增加;将5种黄酮类成分折算成槲皮素和山奈酚2种苷元,RSD值均小于5%,表明其含量基本无变化。结果说明苦荞麦在蒸制过程中,黄酮苷元类成分完全转化为糖苷类黄酮,黄酮苷元的总量无变化,推测苦荞麦脱壳加工为苦荞米是在蒸熟过程中发生了黄酮苷元类成分转化为糖苷类黄酮的反应。
2.4 5种黄酮类成分电子舌滋味分析
由图2可知,5种黄酮类成分在苦味、涩味、后苦味、后涩味以及酸味上有一定差异,其中C4和C5的苦味、涩味、后苦味以及后涩味值均高于C1~C3,酸味值则是前者低于后者。结果说明苦荞麦中的黄酮苷元类成分的苦味和涩味值高于糖苷类黄酮。
图2
2.5 苦荞麦中黄酮类成分α-葡萄糖苷酶抑制活性对比
由图3可知,5种黄酮类成分对α-葡萄糖苷酶的抑制活性有较大差异,其中C4~C5随着样品浓度的增加,对α-葡萄糖苷酶的抑制活性也随之增加,阳性对照阿卡波糖、槲皮素和山奈酚抑制α-葡萄糖苷酶活性的半抑制浓度(IC50)分别为9.23、0.15和0.16 mg/mL,槲皮素和山奈酚的α-葡萄糖苷酶抑制活性明显高于阳性对照阿卡波糖。而C1~C3在该浓度范围内则对α-葡萄糖苷酶几乎无抑制活性。结果表明,苦荞麦的5种黄酮类成分中,苷元类黄酮槲皮素和山奈酚的α-葡萄糖苷酶抑制活性明显高于糖苷类黄酮槲皮素-3-芸香糖苷-7-葡萄糖苷、芦丁和山奈酚-3-O-芸香糖苷。
图3
图3
苦荞中黄酮类成分α-葡萄糖苷酶抑制活性对比
Fig.3
Comparison of α-glucosidase inhibitory activity of flavonoids in tartary buckwheat
3 讨论
苦荞麦作为一种重要的杂粮作物,除含有较丰富的淀粉、蛋白质、维生素、微量元素和膳食纤维等营养物质外[1-2],还含有其他谷物所欠缺的生物活性成分[3
因此,本研究结果可以对苦荞加工利用提供参考,如以苦荞粉、苦荞面、苦荞饼和苦荞沙琪玛等普通食品食用,可延长苦荞麦的贮存时间。以脱壳后的苦荞米进行加工食用,可降低黄酮苷元的含量,从而减少苦味和涩味等不良滋味;以苦荞茶、苦荞酒、苦荞胶囊等功能性食品应用,新成熟苦荞麦中黄酮苷元含量较高,其生物活性强,因此可以新成熟苦荞麦为原料进行加工利用。本文在研究滋味和α-葡萄糖苷酶抑制活性时,以5种黄酮类成分标准品作为研究对象,不能完全推断苦荞麦不同贮存时间的滋味和生物活性,下一步将进行不同贮存时间苦荞麦和加工后的苦荞米的滋味及生物活性研究,对本文研究内容和结论进行验证。
4 结论
对苦荞麦贮存及加工过程5种黄酮类成分含量进行测定及分析,并对5种黄酮类成分的滋味和α-葡萄糖苷酶抑制活性进行研究。苦荞麦在新成熟时,黄酮苷元类成分含量相对较高,黄酮苷元类成分的苦味和涩味相对比较突出,α-葡萄糖苷酶抑制活性较高;而随着贮存时间的延长以及苦荞米的加工,黄酮类苷元类成分转化为糖苷类黄酮,糖苷类黄酮的苦味和涩味减弱,α-葡萄糖苷酶抑制活性较弱。结果表明,延长苦荞麦的贮存时间可减少苦味,脱壳后的苦荞米可作为普通食品的原料;新成熟苦荞麦为原料可以进行功能性食品的加工利用。
参考文献
Buckwheat as a functional food and its effects on health
Advances in the development of functional foods from buckwheat
DOI:10.1080/20014091091887
PMID:11592684
Buckwheat originated in North or East Asia and is widely adapted in North America. It has been grown since at least 1000 BC in China. It has very strong adaptability to adverse environments with a very short growing span. Many varieties are growing around the world, but mainly in the north hemisphere. Currently the most common buckwheat spice is Fagopyrum esculentum Moench (common buckwheat or sweet buckwheat), while Fagopyrum tartaricum is also available in some mountainous regions. Many nutraceutical compounds exist in buckwheat seeds and other tissues. Buckwheat has been used and will be better used as an important raw material for functional food production. In this review we focus on works related to the development of functional foods from common buckwheat, Fagopyrum esculentum Moench. A lot of research has be conducted in the functionalities and properties of buckwheat proteins, flavonoids, flavones, phytosterols, thiamin-binding proteins, and other rare compounds in buckwheat seeds. Buckwheat proteins have unique amino acid composition with special biological activities of cholesterol-lowering effects, antihypertensition effects, and improving the constipation and obisity conditions by acting similar as to dietary fiber and interrupting the in vivo metabolisms. The trypsin inhibitors isolated from buckwheat seeds are heat stable and can cause poor digestion if they are not suitably cooked before consumption. The allergenic proteins existing in the buckwheat seeds and their derivatives were reviewed with respect to their chemical and biochemical characteristics as well as the physiological reactions after digestion. Some possible mechanisms involved in these effects are discussed in this review. Experiments, both with animal models and with human beings, revealed that buckwheat flour can improve diabetes, obesity, hypertension, hypercholesterolemia and constipation. Methods to exploit buckwheat seeds and flour to produce highly effective nutraceuticals are also reviewed.
Liquid chromatography-mass spectrometry-based metabolomics analysis of flavonoids and anthraquinones in Fagopyrum tataricum L. Gaertn. (tartary buckwheat) seeds to trace morphological variations
Chemical profile, antimicrobial and antioxidant activity assessment of the crude extrcat and its main flavonoids from tartary buckwheat sprouts
Flavonoids in common and tartary buckwheat hull extracts and antioxidant activity of the extracts against lipids in mayonnaise
DOI:10.1007/s13197-019-03761-2
PMID:31168153
Buckwheat hulls, generally discarded as waste, have been known to possess various flavonoids and high antioxidant activities. The objective of this study was to determine effect of extracting solvents [water, ethanol (20%, 50%, 80%, and 100%), methanol, and acetone] on total phenolic content, flavonoid content and composition, and antioxidant activities of common and tartary buckwheat hull extracts. Antioxidative effect of common and tartary buckwheat hull extracts on lipids in mayonnaise was also investigated. Vitexin, isovitexin, isoorientin, orientin, rutin, isoquercetin, and quercetin were identified in the common buckwheat hull extracts, while rutin, quercetin, isoorientin, and isoquercetin were in the tartary buckwheat hull extracts. The methanol and 80% ethanol extracts had more flavonoids than the others, while the aqueous ethanol extracts from both of the hulls had more total phenolics and antioxidant activities. Oxidative stability of lipids in mayonnaises added with common and tartary buckwheat hull extracts (0.02 and 0.08%, w/w) prepared by 50% ethanol were higher than that in the mayonnaise with butylated hydroxytoluene (0.02%) and control. Oxidative stability was not significantly different between the mayonnaises added with the two buckwheat hull extracts.
Effect of co-treatment of microwave and exogenous L-phenylalanine on the enrichment of flavonoids in Tartary buckwheat sprouts
Comparison of the taste mechanisms of umami and bitter peptides from fermented mandarin fish (Chouguiyu) based on molecular docking and eletronic tongue technology
Bio-assay guided isolation of α-glucosidase inhibitory constituents from Hibiscus mutabilis leaves
DOI:10.1002/pca.1375
PMID:22161959
[本文引用: 1]
The increasing demand for natural-product-based medicines and health-care products for the management of diabetes encouraged investigation of this commonly available Indian plant.To establish the anti-diabetic (α-glucosidase inhibitory) activity of H. mutabilis leaf extract, isolate and identify the constituents responsible for the activity, and validate a HPLC method for quantification of the active constituents for standardisation of the extract.The methanolic extract of leaves was partitioned between water, n-butanol and ethyl acetate. Bio-assay guided fractionation, based on inhibition of α-glucosidase, allowed isolation and identification of the active components. The active components were quantified using RP-HPLC-DAD validated for linearity, limit of detection, limit of quantification, precision, accuracy and robustness for this plant extract and the partitioned fractions.Ferulic acid and caffeic acid were identified as the α-glucosidase inhibitors present in H. mutabilis. They were partitioned into an ethyl acetate fraction. The HPLC-DAD calibration curve showed good linearity (r² > 0.99). For the recovery studies the %RSD was less than 2%. The interday and intraday variations were found to be less than 4% RSD for retention time and response.The identification of α-glucosidase inhibition activity in H. mutabilis supports further investigations into the possible use of the plant for the management of diabetes. The HPLC method validated for these extracts will be useful in future research with the plant.Copyright © 2011 John Wiley & Sons, Ltd.
槲皮素及其衍生物的生物活性研究进展
不同荞麦品种主要功能成分分析及评价
Antioxidant compounds from buckwheat (Fagopyrum esculentum Moench) Hulls
/
〈 |
|
〉 |
