作物杂志,2024, 第1期: 80–89 doi: 10.16035/j.issn.1001-7283.2024.01.011

所属专题: 玉米专题

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

玉米WRKY转录因子IIc亚家族分析及其在干旱胁迫下的表达分析

毋莹1,2(), 胡蝶1,2, 李婷1,2, 段乾元1, 韦宁宁1,2, 张兴华1,2, 徐淑兔1,2, 薛吉全1,2()   

  1. 1西北农林科技大学农学院,712100,陕西杨凌
    2农业农村部西北旱区玉米生物学与遗传育种重点实验室,712100,陕西杨凌
  • 收稿日期:2022-09-07 修回日期:2023-05-24 出版日期:2024-02-15 发布日期:2024-02-20
  • 通讯作者: 薛吉全,主要从事玉米遗传育种研究,E-mail:xjq2934@163.com
  • 作者简介:毋莹,研究方向为玉米遗传育种,E-mail:wuying313@nwafu.edu.cn
  • 基金资助:
    国家玉米产业技术体系(CARS-02)

Analysis of WRKY Transcription Factor IIc Subfamily in Maize and Its Expression Profile under Drought

Wu Ying1,2(), Hu Die1,2, Li Ting1,2, Duan Qianyuan1, Wei Ningning1,2, Zhang Xinghua1,2, Xu Shutu1,2, Xue Jiquan1,2()   

  1. 1College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
    2Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
  • Received:2022-09-07 Revised:2023-05-24 Online:2024-02-15 Published:2024-02-20
  • Contact: Xue Jiquan

摘要:

利用生物信息学方法鉴定了玉米WRKY IIc亚族成员,系统全面地分析其理化性质、染色体定位、基因结构、蛋白保守结构域和启动子顺式作用元件;利用已发表的RNA-seq数据,分析ZmWRKY IIc亚家族基因在不同组织部位和不同生长发育时期干旱处理下的表达;同时预测IIc亚家族ZmWRKY蛋白质的互作网络。结果表明,玉米WRKY IIc亚家族有25个成员,其进化相对保守,可在玉米不同组织和不同生长发育时期参与干旱胁迫响应,并且可能在响应干旱胁迫的过程中与MYB、bHLH转录因子以及生长素调节因子存在一定的互作。

关键词: 玉米, WRKY IIc, 家族分析, 干旱, 表达分析

Abstract:

The members of the WRKY IIc subfamily of maize were identified by bioinformatics methods, and their physicochemical properties, chromosomal location, gene structures, protein conserved domains, cis-acting elements in the promoters were comprehensively analyzed. The expression of ZmWRKY IIc subfamily in different tissue parts and different growth and development stages under drought treatment were analyzed by using the published RNA-seq data. Furthermore, the interaction network of ZmWRKY IIc proteins was constructed. The results showed that the WRKY IIc subfamily of maize had 25 members, they were relatively conserved in evolution and could participate in the regulation of drought stress responses in different tissues and stages of growth and development. They may also interact with MYB, bHLH transcription factors and auxin regulators to resist drought stress.

Key words: Maize, WRKY IIc, Family analysis, Drought, Expression analysis

表1

ZmWRKY IIc亚家族基因基本信息

基因名称
Gene name
蛋白质名称
Protein name
位置
Position
可变剪切
Transcript
氨基酸数
Number of
amino acids
分子质量
Molecular
weight
理论等电点
Theoretical
pI
亚细胞定位
Subcellular
localization
总平均亲水性
Grand average of
hydropathicity
ZmWRKYIIc-1 Zm00001d033471_P001 Chr1:263620528-263621882 1 99 11 218.69 9.67 细胞核 -1.111
ZmWRKYIIc-2 Zm00001d034073_P002 Chr1:283193730-283197425 2 331 34 511.99 6.00 细胞核 -0.582
ZmWRKYIIc-3 Zm00001d002794_P001 Chr2:22815199-22820094 1 284 30 667.79 8.54 细胞核 -0.425
ZmWRKYIIc-4 Zm00001d007329_P001 Chr2:228732533-228737268 1 220 24 267.47 9.22 细胞核 -1.003
ZmWRKYIIc-5 Zm00001d039531_P001 Chr3:7394664-7395768 1 273 28 090.01 5.83 细胞核 -0.396
ZmWRKYIIc-6 Zm00001d039584_P001 Chr3:8455756-8463632 1 293 31 182.83 9.48 细胞核 -0.670
ZmWRKYIIc-7 Zm00001d041958_P001 Chr3:145661117-145663100 1 337 36 825.13 5.41 细胞核 -0.624
ZmWRKYIIc-8 Zm00001d043663_P001 Chr3:206352165-206353102 1 211 22 647.26 8.33 细胞核 -0.424
ZmWRKYIIc-9 Zm00001d043950_P001 Chr3:214609031-214612175 1 381 40 180.82 6.76 细胞核 -0.627
ZmWRKYIIc-10 Zm00001d044162_P001 Chr3:220824499-220827409 1 352 38 331.29 6.78 细胞核 -0.923
ZmWRKYIIc-11 Zm00001d049173_P001 Chr4:19025176-19028095 1 229 24 730.15 9.57 细胞核 -0.907
ZmWRKYIIc-12 Zm00001d051328_P002 Chr4:154581235-154589610 1 183 19 852.04 12.04 细胞核 -0.338
ZmWRKYIIc-13 Zm00001d013630_P001 Chr5:15863794-15865837 1 140 15 122.52 5.81 细胞核 -0.965
ZmWRKYIIc-14 Zm00001d037607_P001 Chr6:131561417-131562772 1 195 21 165.48 7.74 细胞核 -0.551
ZmWRKYIIc-15 Zm00001d038761_P001 Chr6:163995859-163996782 2 218 23 442.45 9.18 细胞核 -0.520
ZmWRKYIIc-16 Zm00001d038843_P001 Chr6:165655159-165656827 1 221 22 963.36 6.65 细胞核 -0.302
ZmWRKYIIc-17 Zm00001d039032_P001 Chr6:168945257-168948458 1 408 42 835.64 6.50 细胞核 -0.455
ZmWRKYIIc-18 Zm00001d018656_P001 Chr7:2050308-2051829 1 332 34 764.67 6.39 细胞核 -0.405
ZmWRKYIIc-19 Zm00001d008793_P001 Chr8:20528476-20529755 1 229 24 138.91 7.64 细胞核 -0.478
ZmWRKYIIc-20 Zm00001d009939_P001 Chr8:90768544-90769854 1 205 22 045.12 6.51 细胞核 -0.658
ZmWRKYIIc-21 Zm00001d010805_P001 Chr8:128361517-128362582 1 229 24 295.48 8.72 细胞核 -0.448
ZmWRKYIIc-22 Zm00001d011133_P001 Chr8:140010389-140011159 1 196 20 552.60 8.87 细胞核 -0.579
ZmWRKYIIc-23 Zm00001d011413_P001 Chr8:149844919-149847262 1 359 39 228.34 6.30 细胞核 -0.840
ZmWRKYIIc-24 Zm00001d011527_P001 Chr8:153565171-153568905 1 414 43 413.52 6.09 细胞核 -0.512
ZmWRKYIIc-25 Zm00001d012789_P001 Chr8:181008342-181010034 1 227 25 163.23 8.32 细胞核 -0.711

图1

ZmWRKY IIc亚家族基因在染色体的分布(a)及其编码蛋白系统发育树(b)

图2

ZmWRKY IIc亚家族基因结构

图3

玉米ZmWRKY IIc亚家族蛋白的保守结构域及保守基序分析

图4

玉米ZmWRKY IIc亚家族基因启动子顺式作用元件分析

图5

干旱胁迫下ZmWRKYs IIc亚族基因的表达a、b、c分别为3个来源的数据,均为干旱胁迫和正常灌水条件下的不同组织中ZmWRKY IIc亚族基因表达模式分析,以-log2(FPKM)为值,并使用行标准化,d:蓝色和橙色分别代表V2(两叶期)-V3(三叶期)和R1后期(吐丝后期)干旱胁迫下的差异表达基因。

图6

ZmWRKY IIc亚家族蛋白互作网络分析 表示ZmWRKY IIc亚家族蛋白, 表示WRKY其他亚家族蛋白, 表示bHLH家族蛋白, 表示MYB家族蛋白, 表示其他互作蛋白。各节点圆圈大小表示连接度,节点连线粗细表示相关系数绝对值大小。

[1] 刘亮, 陈美娟, 范婷婷. 农业气象灾害对玉米产量的影响. 新农业, 2022(6):10-11.
[2] 孙琦. 我国不同年代主推玉米品种耐旱抗病性的变化趋势. 北京: 中国农业科学院, 2012.
[3] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2):313-324.
doi: 10.1016/j.cell.2016.08.029
[4] Tran L, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 2004, 16(9):2481-2498.
doi: 10.1105/tpc.104.022699
[5] Leng P F, Zhao J. Transcription factors as molecular switches to regulate drought adaptation in maize. Theoretical and Applied Genetics, 2020, 133(3):1455-1465.
doi: 10.1007/s00122-019-03494-y
[6] Cai R H, Zhao Y, Wang Y F, et al. Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue and Organ Culture, 2015, 119(3):565-577.
doi: 10.1007/s11240-014-0556-7
[7] Mao H D, Yu L J, Han R, et al. ZmNAC55,a maize stress- responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2016, 105:55-66.
doi: 10.1016/j.plaphy.2016.04.018
[8] Ma H Z, Liu C, Li Z X, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiology, 2018, 178(2):753-770.
doi: 10.1104/pp.18.00436
[9] Mangelsen E, Kilian J, Berendzen K W, et al. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics, 2008, 9(1):1-17.
doi: 10.1186/1471-2164-9-1
[10] Hu W J, Ren Q Y, Chen Y L, et al. Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses. BMC Plant Biology, 2021, 21(1):1-21.
doi: 10.1186/s12870-020-02777-7
[11] Yang Z, Chi X Y, Guo F F, et al. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress- responsive gene, SbRD19, in sorghum. Journal of Plant Physiology, 2020, 153142:246-247.
[12] Ren X Z, Chen Z Z, Liu Y, et al. ABO3,a WRKY transcription factor,mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. The Plant Journal, 2010, 63(3):417-429.
doi: 10.1111/tpj.2010.63.issue-3
[13] 徐金鹏, 祁亚男, 于延冲. 盐、干旱胁迫对拟南芥WRKY71基因突变体种子萌发的影响. 山东农业科学, 2020, 52(3):34-37.
[14] Wu H L, Ni Z F, Yao Y Y, et al. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.). Progress in Natural Science, 2008, 18(6):697-705.
doi: 10.1016/j.pnsc.2007.12.006
[15] 郭玉敏, 张云华. 玉米ZmWRKY53基因克隆及诱导表达分析. 分子植物育种, 2020, 18(3):719-728.
[16] 郭玉敏, 张云华, 井涛, 等. 过表达玉米转录因子ZmWRKY101基因提高拟南芥植株的耐盐力. 植物生理学报, 2020, 25(9):1921-1932.
[17] Alzohairy A M. BioEdit: an important software for molecular biology. Gerf Bulletin of Biosciences, 2011, 2(1):60-61.
[18] Hall B G. Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 2013, 30(5):1229-1235.
doi: 10.1093/molbev/mst012 pmid: 23486614
[19] Chen C J, Chen H, Zhang Y, et al. Tbtools:an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009
[20] Jensen L J, Michael K, Manuel S, et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 2009, 37(1):412-416.
[21] Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media, 2009, 3(1):361-362.
[22] Miao Z Y, Han Z X, Zhang T, et al. A systems approach to a spatio-temporal understanding of the drought stress response in maize. Scientific Reports, 2017, 7(1):6590.
doi: 10.1038/s41598-017-06929-y pmid: 28747711
[23] Liu Y, Zhou M Y, Gao Z X, et al. RNA-Seq analysis reveals MAPKKK family members related to drought tolerance in maize. PLoS ONE, 2015, 10(11):e0143128.
doi: 10.1371/journal.pone.0143128
[24] Yang M, Geng M Y, Shen P F, et al. Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize (Zea mays L.). Plant Physiology and Biochemistry, 2019, 135:304-309.
doi: 10.1016/j.plaphy.2018.12.025
[25] Zhang H M, Zhu J H, Gong Z Z, et al. Abiotic stress responses in plants. Nature Reviews Genetics, 2021, 23(2):104-119.
doi: 10.1038/s41576-021-00413-0 pmid: 34561623
[26] Qiu Y P, Yu D Q. Overexpression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany, 2009, 65 (1):35-47.
doi: 10.1016/j.envexpbot.2008.07.002
[27] Wang C T, Ru J N, Liu Y W, et al. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. International Journal of Molecular Sciences, 2018, 19(10):3046.
doi: 10.3390/ijms19103046
[28] 李建萍.玉米转录因子ZmWRKY25的克隆及其抗逆功能分析. 长春:吉林大学, 2012.
[29] Jiang Y J, Gang L, Yu D Q. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Molecular Plant, 2012, 5(6):1375-1388.
doi: 10.1093/mp/sss080
[30] 蔡荣号.玉米WRKY转录因子IId亚族抗逆相关基因的鉴定及ZmWRKY17的功能分析. 合肥:安徽农业大学, 2016.
[31] Zhang T, Tan D F, Zhang L, et al. Phylogenetic analysis and drought-responsive expression profiles of the WRKY transcription factor family in maize. Agri Gene, 2017, 3:99-108.
doi: 10.1016/j.aggene.2017.01.001
[32] Alan L, Austen B, Lyndsey A, et al. Advances in the MYB- bHLH-WD Repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant and Cell Physiology, 2017, 58(9):1431-1441.
doi: 10.1093/pcp/pcx075
[33] Amato A, Cavallini E, Walker A R, et al. The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine. The Plant Journal, 2019, 99(6):1220-1241.
doi: 10.1111/tpj.14419 pmid: 31125454
[34] Zhao M Z, Morohashi K, Hatlestad G, et al. The TTG1-bHLH- MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development, 2008, 135(11):1991-1999.
doi: 10.1242/dev.016873
[35] Verweij W, Spelt C E, Bliek M, et al. Functionally similar WRKY proteins regulate vacuolar acidification in petunia and hair development in Arabidopsis. The Plant Cell, 2016, 28(3):786-803.
doi: 10.1105/tpc.15.00608 pmid: 26977085
[1] 冯勇, 侯旭光, 薛春雷, 张来厚, 宋国栋, 苏敏莉, 傅晓华, 孙宇燕. 内蒙古玉米品种适宜生态区划分[J]. 作物杂志, 2024, (1): 23–30
[2] 王海涛, 任春梅, 董岩, 李硕, 程兆榜, 季英华. 江苏淮安市高粱上玉米黄花叶病毒的分子检测与鉴定[J]. 作物杂志, 2024, (1): 233–238
[3] 马娟, 黄璐, 宇婷, 郭国俊, 朱卫红, 刘京宝. 玉米穗粗一般配合力多位点全基因组关联分析和基因组预测[J]. 作物杂志, 2024, (1): 31–39
[4] 金玉, 郭新宇, 张颖, 李大壮, 王璟璐. 玉米叶片气孔表型鉴定及研究进展[J]. 作物杂志, 2023, (6): 1–10
[5] 吴琦, 明博, 高尚, 杨宏业, 张川, 初振东, 李少昆. 东北冷凉区玉米籽粒脱水模型构建策略研究[J]. 作物杂志, 2023, (6): 108–113
[6] 刘希伟, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 小麦生育中后期干旱高温对籽粒产量形成过程的影响机制及缓解措施[J]. 作物杂志, 2023, (6): 17–25
[7] 梁忠宇, 薛军, 张国强, 明博, 沈东萍, 方梁, 周林立, 张玉芹, 杨恒山, 王克如, 李少昆. 水肥一体化施磷量对玉米抗倒伏能力的影响[J]. 作物杂志, 2023, (6): 190–194
[8] 曹庆军, 李刚, 杨浩, 娄玉勇, 杨粉团, 孔凡丽, 李辛琲, 赵新凯, 姜晓莉. 不同耕作方式对春玉米种床质量的影响及其与幼苗群体建成和产量的关系[J]. 作物杂志, 2023, (5): 249–254
[9] 于乐, 李林, 黄红娟, 黄兆峰, 朱文达, 魏守辉. 湖北省玉米田杂草种类组成及群落特征[J]. 作物杂志, 2023, (5): 272–279
[10] 杨宗莹, 肖贵, 张红伟. 利用玉米F1群体进行玉米全株鲜重的全基因组预测分析[J]. 作物杂志, 2023, (5): 43–48
[11] 曲海涛, 李忠南, 王越人, 马艺文, 相洋, 邬生辉, 谭倬, 王纯, 魏强, 罗瑶, 李光发. 玉米百粒重遗传育种效应研究[J]. 作物杂志, 2023, (5): 66–70
[12] 杨密, 王美娟, 许海涛. 不同生态区玉米自交系苞叶动态发育差异性研究[J]. 作物杂志, 2023, (5): 81–90
[13] 杨程, 张德奇, 杜思梦, 张丽佳, 靳海洋, 李滢, 邵运辉, 王汉芳, 方保停, 李向东, 刘美君. 黑暗和强光下脱水对小麦离体叶片光系统活性的影响[J]. 作物杂志, 2023, (5): 98–103
[14] 袁刘正, 王会强, 王秋岭, 朱世蝶, 赵月强, 袁曼曼, 王会涛, 张运栋, 柳家友, 袁永强. 遮阴条件下玉米自交系配合力与遗传效应分析[J]. 作物杂志, 2023, (4): 104–109
[15] 郑飞, 陈静, 崔亚坤, 孔令杰, 孟庆长, 李杰, 刘瑞响, 张美景, 赵文明, 陈艳萍. 淮北不同生态区丰产稳产宜机收玉米新品种筛选[J]. 作物杂志, 2023, (4): 110–117
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!