作物杂志,2017, 第5期: 112–118 doi: 10.16035/j.issn.1001-7283.2017.05.019

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

幼穗分化期喷施细胞分裂素(CTK)对水稻穗部性状及株型性状的影响

宫彦龙1,2,雷月1,夏原野2,杜志敏2,徐海2   

  1. 1贵州省水稻研究所,550006,贵州贵阳
    2沈阳农业大学水稻研究所/农业部东北水稻生物学与遗传育种重点实验室/北方超级粳稻育种教育部重点实验室/辽宁省北方粳稻遗传育种重点实验室,110866,辽宁沈阳
  • 收稿日期:2017-04-05 修回日期:2017-07-19 出版日期:2017-10-15 发布日期:2018-08-26
  • 通讯作者: 徐海
  • 作者简介:宫彦龙,研究实习员,研究方向为水稻生理与遗传
  • 基金资助:
    现代农业产业技术体系建设专项资金项目(CARS-01-13);贵州省优秀青年科技人才培养对象专项资金(黔科合人字[2011]19号);贵州省科技计划(黔科合重大专项字[2013]6023号);贵州省科研机构服务企业行动计划(黔科合服企[2014]4005);贵州省科技合作计划(黔科合LH字[2015]7074号);贵州省现代水稻产业技术体系(GZCYTX2016-06)

Effects of Cytokinins Used at Panicle Differentiation Stage on Panicle Traits and Plant Type Traits of Rice

Gong Yanlong1,2,Lei Yue1,Xia Yuanye2,Du Zhimin2,Xu Hai2   

  1. 1Guizhou Rice Institute,Guiyang 550006,Guizhou,China
    2Institute of Rice Research,Shenyang Agricultural University/Key Laboratory of Northeast Rice Biology and Genetic Breeding,Ministry of Agriculture/Key Laboratory of Northern Japonica Super Rice Breeding,Ministry of Education/Key Laboratory of Northern Japonica Genetics and Breeding of Liaoning Province,Shenyang 110866,Liaoning,China
  • Received:2017-04-05 Revised:2017-07-19 Online:2017-10-15 Published:2018-08-26
  • Contact: Hai Xu

摘要:

以6个水稻品种为试验材料,分别在幼穗分化的苞分化期(T1)、枝梗分化期(T2)、颖花分化期(T3)、花粉母细胞形成及减数分裂期(T4)和花粉充实完成期(T5)喷施低浓度(C1,5mg/L)、中浓度(C2,10mg/L)、高浓度(C3,20mg/L)的细胞分裂素(cytokinins,CTK),研究其对水稻穗部性状及株型性状的影响。结果表明,幼穗分化的不同时期喷施不同浓度的CTK后,穗长、二次枝梗结实率和穗结实率极显著高于对照,不同浓度CTK处理间差异不显著。穗粒数以低浓度CTK处理最高,其他处理与对照差异不显著。喷施CTK可极显著或显著降低千粒重(包括一次和二次枝梗千粒重)和着粒密度。幼穗分化期喷施不同浓度CTK后,剑叶基角、倒二叶基角、倒三叶基角、倒二叶长、倒三叶长和倒三节长极显著高于对照。在幼穗分化的不同时期喷施CTK后,对穗长的促进效果T1时期喷施极显著高于后4个时期喷施,对穗粒数的促进效果处理T1>T5>T4>T2>T3,对结实率的促进效果以T4时期施用最为明显,T3时期施用着粒密度的降幅最大。CTK的施用浓度与施用时期间具有互作效应,针对不同穗部性状的调控效果,确定最佳的施用浓度与施用时期组合。

关键词: 水稻, 细胞分裂素, 穗部性状, 株型性状, 幼穗分化

Abstract:

Six rice cultivars of indica and japonica were used as test materials to study the effects of spraying cytokinin with lower, medium and high concentrations on the panicle traits of rice during panicle differentiation stages, which including bract differentiation stage (T1), branch differentiation stage (T2), spikelet primordium differentiation stage (T3), pollen mother cell formation and meiosis stage (T4), pollen filling stage (T5). Panicle traits of indica and japonica rice in response to exogenous hormone were investigated to determine the optimal spraying stages and concentrations of hormone for regulating panicle traits and rice plant types. The terminal goal was to provide a theoretical basis and reference for the application of hormone production by way of regulation of rice panicle traits and plant type traits. The results were showed as follows: Panicle length and seed setting rate of secondary branch and seed setting rate were extremely significantly higher than that of control, but the differences between different other concentrations of CTK were not significant. Grain number with low concentrations used were higher than that of control, but those under other treatments was not significantly different. Grains weight and grains density fell significantly after applying CTK and flag leaf angle, top second leaf angle, top third leaf angle, top third internode length , flag leaf length, top second leaf width and top third leaf width were extremely significantly higher than that of control. After spraying CTK at different periods of panicle differentiation, the effects of promoting panicle length were bract differentiation stage (T1) extremely significantly higher than that at other stages. The effects of promoting grain number were T1>T5>T4>T2>T3. The effect of promoting panicle seed setting rate were more obvious at pollen mother cell formation and meiosis stage (T4), the more obvious the effect of grains density decreased was at spikelet primordium differentiation stage (T3). There was interaction effect between the spraying periods and concentrations. We made sure the best combination of spraying periods and concentrations aimed at regulating effect of different panicle traits.

Key words: Rice, Cytokinin, Panicle traits, Plant type traits, Panicle differentiation

表1

CTK喷施日期 月/日"

品种Variety T1 T2 T3 T4 T5
秋田小町Akitakaomaqi 7/05 7/09 7/17 7/24 8/03
沈农265 Shennong 265 7/04 7/09 7/17 7/23 8/03
中优早8 Zhongyouzao 8 7/03 7/08 7/15 7/22 8/01
丰锦Toyonishiki 7/08 7/13 7/21 7/28 8/06
七山占Qishanzhan 7/03 7/08 7/16 7/22 8/02
沈农1403 Shennong 1403 7/10 7/14 7/21 7/28 8/08

表2

不同浓度CTK处理对水稻穗部性状的影响"

性状Traits 对照CK C1 C2 C3
穗长PL (cm) 18.28bB 19.71aA 19.77aA 19.81aA
一次枝梗数NPB (个) 12.82aB 12.99aAB 13.06aA 13.00aAB
二次枝梗数NSB (个) 28.15abA 28.41aA 27.69bA 27.87abA
穗粒数GPP (粒) 166.93bA 168.79aA 166.95bA 167.08bA
一次枝梗结实率PBSSR (%) 0.93aA 0.93aA 0.93aA 0.93aA
二次枝梗结实率SBSSR (%) 0.85bB 0.89aA 0.89aA 0.88aA
穗结实率SSR (%) 0.89bB 0.91aA 0.91aA 0.91aA
一次枝梗千粒重PBTGW (g) 25.57aA 25.12cB 25.32bB 25.21bcB
二次枝梗千粒重SBTGW (g) 23.10aA 22.67bB 22.66bB 22.63bB
总体千粒重TGW (g) 24.56aA 23.95bB 24.10bB 24.06bB
着粒密度GD (粒/10cm) 91.95aA 87.69bAB 84.03cB 84.59cB

表3

不同时期施用CTK对水稻穗部性状的影响"

性状Traits T1 T2 T3 T4 T5
穗长PL (cm) 19.65aA 19.27bB 19.33bB 19.36bB 19.36bB
一次枝梗数NPB (个) 12.90bcAB 12.84cB 12.96abcAB 13.11aA 13.04abAB
二次枝梗数NSB (个) 29.83aA 26.81dC 26.51dC 28.03cB 28.98bA
穗粒数GPP (粒) 176.05aA 162.64cC 160.37cC 167.46bB 169.42bB
一次枝梗结实率PBSSR (%) 0.93bB 0.92bB 0.93bB 0.94aA 0.93bB
二次枝梗结实率SBSSR (%) 0.86bC 0.87bBC 0.89aAB 0.90aA 0.87bBC
穗结实率SSR (%) 0.89cC 0.90cBC 0.91abAB 0.92aA 0.90bcBC
一次枝梗千粒重PBTGW (g) 25.42aA 25.40aA 24.96bB 25.32aA 25.43aA
二次枝梗千粒重SBTGW (g) 22.97aA 22.82abA 22.42cB 22.95aA 22.64bcAB
总体千粒重TGW (g) 24.24aA 24.21aA 23.83bB 24.20aA 24.11aA
着粒密度GD (粒/10cm) 89.91aA 84.51cC 83.35cC 89.75aA 87.83bB

表4

CTK调控穗长的最佳施用时期与浓度"

处理
Treatment
穗长
Panicle
length
5%显著水平
5% significant
level
1%极显著水平
1% extremely significant level
处理
Treatment
穗长
Panicle
length
5%显著水平
5% significant
level
1%极显著水平
1% extremely significant level
C3T4 20.15 a A C1T3 19.64 cde ABCD
C1T1 20.10 ab AB C3T2 19.63 cde BCD
C2T1 19.96 abc ABC C1T5 19.52 de CD
C1T2 19.92 abc ABCD C2T2 19.47 e CD
C3T1 19.89 abcd ABCD C1T4 19.40 e D
C2T5 19.87 abcd ABCD CKT1 18.47 f E
C2T4 19.79 abcde ABCD CKT5 18.38 f E
C2T3 19.79 abcde ABCD CKT4 18.30 f E
C3T3 19.71 bcde ABCD CKT3 18.19 f E
C3T5 19.69 cde ABCD CKT2 18.17 f E

表5

CTK调控穗部性状的最佳施用浓度与施用时期"

性状
Traits
调控方向
Regulation
direction
施用时期和浓度最佳组合
Optimal combination of spraying stages and concentrations
穗长PL 促进Increase T4C3
一次枝梗数NPB 促进Increase T1C1
二次枝梗数NSB 促进Increase T1C1
穗粒数GPP 促进Increase T1C1
一次枝梗结实率PBSSR 促进Increase T4C3
二次枝梗结实率SBSSR 促进Increase T4C3
穗结实率SSR 促进Increase T4C3
一次枝梗千粒重PBTGW 降低Decrease T3C1
二次枝梗千粒重SBTGW 降低Decrease T5C1
总体千粒重TGW 降低Decrease T3C1
着粒密度GD 降低Decrease T2C2

表6

不同浓度的CTK对水稻株型性状的影响"

性状Traits 对照CK C1 C2 C3
颈穗弯曲度PC (°) 63.33aA 61.00bA 61.68bA 60.78bA
剑叶基角FLA (°) 19.28bB 24.76aA 23.87aA 24.73aA
倒二叶基角TLA2 (°) 15.70bB 20.60aA 19.43aA 19.24aA
倒三叶基角TLA3 (°) 16.02bB 18.78aA 17.66aA 17.84aA
剑叶长FLL (cm) 26.40cB 27.30bAB 28.18aA 26.93bcB
倒二叶长TLL2 (cm) 34.00cC 35.79bB 37.05aA 35.77bB
倒三叶长TLL3 (cm) 36.92cC 39.36aAB 39.83aA 38.57bB
剑叶宽FLW (cm) 1.51cC 1.55bAB 1.58aA 1.53bB
倒二叶宽TLW2 (cm) 1.27aA 1.27aA 1.28aA 1.28aA
倒三叶宽TLW3 (cm) 1.13aA 1.12aA 1.14aA 1.14aA
倒一节长TNL1 (cm) 30.82aA 30.48aA 31.00aA 30.51aA
倒二节长TNL2 (cm) 18.93bA 19.31aA 18.97abA 19.28aA
倒三节长TNL3 (cm) 15.24bB 15.61aA 15.63aA 15.66aA

表7

不同时期施用CTK对水稻株型性状的影响"

性状Traits T1 T2 T3 T4 T5
颈穗弯曲度PC (°) 60.25bB 60.35bB 62.30abAB 64.32aA 61.25bAB
剑叶基角FLA (°) 20.78bB 23.67aAB 24.42aA 23.79aAB 23.15abAB
倒二叶基角TLA2 (°) 17.40cBC 19.67abA 21.05aA 16.48cC 19.11bAB
倒三叶基角TLA3 (°) 17.30abA 18.32aA 17.65abA 17.09bA 16.75bA
剑叶长FLL (cm) 26.96aA 27.21aA 26.93aA 27.01aA 27.90aA
倒二叶长TLL2 (cm) 35.43aA 35.42aA 35.80aA 35.90aA 35.72aA
倒三叶长TLL3 (cm) 39.08aA 37.94bB 38.83aAB 38.66abAB 38.85aAB
剑叶宽FLW (cm) 1.57aA 1.53bcAB 1.50cB 1.56aA 1.55abAB
倒二叶宽TLW2 (cm) 1.31aA 1.25cB 1.26bcB 1.26bcB 1.28bB
倒三叶宽TLW3 (cm) 1.15aA 1.11cB 1.14abAB 1.12bcAB 1.14abAB
倒一节长TNL1 (cm) 30.70aA 30.44aA 30.85aA 30.87aA 30.67aA
倒二节长TNL2 (cm) 18.74bB 19.17abAB 19.01abAB 19.27aAB 19.41aA
倒三节长TNL3 (cm) 15.11dC 15.36cdBC 15.52bcABC 15.78abAB 15.92aA

表8

CTK调控株型性状的最佳施用浓度与施用时期"

性状
Traits
调控方向
Regulation direction
施用时期和浓度最佳组合
Optimal combination of spraying
stages and concentrations
颈穗弯曲度PC 促进Increase T4C3
剑叶基角FLA 促进Increase T3C1
倒二叶基角TLA2 促进Increase T3C1
倒三叶基角TLA3 促进Increase T3C1
剑叶长FLL 促进Increase T1C2
倒二叶长TLL2 促进Increase T1C2
倒三叶长TLL3 促进Increase T1C2
剑叶宽FLW 促进Increase T1C2
倒二叶宽TLW2 促进Increase T1C2
倒三叶宽TLW3 促进Increase T1C2
倒一节长TNL1 促进Increase T1C2
倒二节长TNL2 促进Increase T5C1
倒三节长TNL3 促进Increase T5C1
[1] 陈绍栋, 杨仁崔 . 籼稻穗部性状的相关遗传力分析.福建农业大学学报, 1996(3):266-270.
[2] 徐正进, 陈温福, 孙占惠 , 等. 辽宁水稻籽粒在穗轴上分布特点及其与结实性的关系. 中国农业科学, 2004,37(7):963-967.
doi: 10.3321/j.issn:0578-1752.2004.07.005
[3] 徐海, 朱春杰, 郭艳华 , 等. 生态环境对籼粳稻杂交后代穗部性状的影响及其与亚种特性的关系. 中国农业科学, 2009,42(5):1540-1549.
[4] 吴亚辉, 陶星星, 肖武名 , 等. 水稻穗部性状的QTL分析. 作物学报, 2014,40(2):214-221.
doi: 10.3724/SP.J.1006.2014.00214
[5] 宫彦龙, 徐海, 夏原野 , 等. 幼穗分化期喷施表油菜素内酯( epi-BR)对水稻穗部性状的影响.作物杂志, 2016(2):133-138.
doi: 10.16035/j.issn.1001-7283.2016.02.025
[6] Miller C O, Skoog F, Okomura F S , et al. Isolation,structure and synthesis of kinetin,a substance promoting cell division. Journal of the American Chemical Society, 1956,78(7):1375-1380.
doi: 10.1021/ja01588a032
[7] Kurakawa T, Ueda N, Maekawa M , et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 2007,445:652-655.
doi: 10.1038/nature05504 pmid: 17287810
[8] Beveridge C A, Kyozuka J . New genes in the strigolactone-related shoot branching pathway. Current Opinion in Plant Biology, 2010,13(1):34-39.
doi: 10.1016/j.pbi.2009.10.003 pmid: 19913454
[9] Leyser O . The control of shoot branching:an example of plant information processing. Plant,Cell& Environment, 2009,32(6) : 694-703.
doi: 10.1111/j.1365-3040.2009.01930.x pmid: 19143993
[10] Dun E A, Brewer P B, Beveridge C A . Strigolactones:discovery of the elusive shoot branching hormone. Trends in Plant Science, 2009,14(7):364-372.
doi: 10.1016/j.tplants.2009.04.003 pmid: 19540149
[11] 王夏雯, 王绍华, 李刚华 , 等. 氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系. 作物学报, 2008,34(12):2184-2189.
doi: 10.3724/SP.J.1006.2008.02184
[12] 杨建昌, 仇明, 王志琴 , 等. 水稻发育胚乳中细胞增殖与细胞分裂素含量的关系. 作物学报, 2004,30(1):11-17.
[13] Werner T, Schmülling T . Cytokinin action in plant development, Current Opinion in Plant Biology, 2009,12(5):527-538.
doi: 10.1016/j.pbi.2009.07.002 pmid: 19740698
[14] 凌启鸿, 张洪程, 苏祖芳 , 等. 水稻叶龄模式.北京: 科学出版社, 1994: 69-215.
[15] 李小艳, 许晅, 朱同生 , 等. 细胞分裂素对玉米产量性状的影响.中国农学通报, 2013(36):219-223.
[16] 刘绍权, 谢晓明, 陈广超 , 等. 植物细胞分裂素提高杂交水稻结实率应用效果初报.中国农村小康科技, 2005(10):24-52.
doi: 10.3969/j.issn.1007-7774.2005.10.009
[17] Powell A F, Paleczny A R, Olechowski H , et al. Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. Plant Physiology and Biochemistry, 2013,64(5):33-40.
doi: 10.1016/j.plaphy.2012.12.010
[18] 彭应财 . 水稻应用植物细胞分裂素的效果.作物杂志, 1996(2):29.
[19] 李国顺, 徐振平 . 细胞分裂素及稀土微肥在杂交水稻制种上的应用效果研究.种子, 1999(4):24-26.
[20] Miyawaki K, Matsumoto-Kitano M, Kakimoto T . Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis:tissue specificity and regulation by auxin,cytokinin,and nitrate. Plant Journal, 2004,37(1):128-138.
doi: 10.1046/j.1365-313X.2003.01945.x
[21] 黄静静, 王绍华, 李刚华 , 等. 6-苄基腺嘌呤对水稻颖花分化影响机制的研究. 南京农业大学学报, 2009,32(3):8-13.
[22] 赵长华, 丁艳锋 . 水稻穗粒数形成的生理生化研究进展.耕作与栽培, 2001(1):5-9.
doi: 10.3969/j.issn.1008-2239.2001.01.002
[23] 徐海, 宫彦龙, 夏原野 , 等. 中日水稻品种杂交后代株型性状的变化及其相互关系. 中国水稻科学, 2015,29(4):363-372.
doi: 10.3969/j.issn.1001-7216.2015.04.005
[1] 姬生栋 栗 鹏 李江伟 宋刘敏 刘苗苗 高狂龙 尹海庆. 水稻株系与亲本间灌浆期POD 酶谱及遗传效应分析[J]. 作物杂志, 2018, (5): 17–20
[2] 马孟莉 郑 云 周晓梅 张婷婷 张晓倩 卢丙越. 云南哈尼梯田红米地方品种遗传多样性分析[J]. 作物杂志, 2018, (5): 21–26
[3] 陈瑛瑛 王徐艺凌 朱宇涵 武 威 刘 涛 孙成明. 水稻穗部氮素含量高光谱估测研究[J]. 作物杂志, 2018, (5): 116–120
[4] 隋阳辉, 高继平 刘彩虹, 徐正进 王延波 赵海岩. 东北冷凉地区秸秆还田方式对水稻#br# 光合、干物质积累及氮素吸收的影响[J]. 作物杂志, 2018, (5): 137–143
[5] 杨飞,马文礼,陈永伟,张战胜,王昊. 匀播、滴灌对春小麦幼穗分化进程及产量的影响[J]. 作物杂志, 2018, (4): 84–88
[6] 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 48–52
[7] 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018, (4): 69–78
[8] 曾波. 近30年来我国水稻主要品种更新换代历程浅析[J]. 作物杂志, 2018, (3): 1–7
[9] 张莉,李赞堂,王士银,麻艳超,东方阳,李学勇,徐江. 水稻氮素吸收低效型突变体osnad1的生理和遗传分析[J]. 作物杂志, 2018, (3): 68–76
[10] 赫臣,郑桂萍,赵海成,陈立强,李红宇,吕艳东,宋江. 增施腐殖酸及减量施肥对盐碱地水稻穗部性状与产量的影响[J]. 作物杂志, 2018, (3): 129–134
[11] 崔勇. 稻田水旱轮作的研究进展[J]. 作物杂志, 2018, (3): 8–14
[12] 唐志强,董立强,李睿,张丽颖,何娜,李跃东. 氮素与土壤类型对水稻秧苗素质及养分吸收的影响[J]. 作物杂志, 2018, (3): 141–147
[13] 曾波,孙世贤,王洁. 我国水稻主要品种近30年来审定及推广应用概况[J]. 作物杂志, 2018, (2): 1–5
[14] 曲歌,陈争光,王雪. 基于近红外光谱与SIMCA和PLS-DA的水稻品种鉴别[J]. 作物杂志, 2018, (2): 166–170
[15] 王洁,曾波,雷财林,赵志超,王久林,程治军. 北方国家水稻区域试验近15年参试品种分析[J]. 作物杂志, 2018, (1): 71–76
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .