作物杂志,2020, 第3期: 161–168 doi: 10.16035/j.issn.1001-7283.2020.03.025

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

夏玉米粒收质量及水分利用效率的化学调控效应研究

刘见1,2, 孙彬1, 张伟强2,3(), 冯晓曦4, 张寄阳2, 宁东峰2, 秦安振2, 刘战东2, 乔淼1, 沈红丽1, 徐燕1   

  1. 1许昌市农田水利技术试验推广站,461000,河南许昌
    2中国农业科学院农田灌溉研究所/农业农村部作物需水与调控重点实验室,453002,河南新乡
    3河南省科学技术发展战略研究所,450000,河南郑州
    4驻马店市农业科学院,463000,河南驻马店
  • 收稿日期:2019-10-08 修回日期:2019-12-12 出版日期:2020-06-15 发布日期:2020-06-10
  • 通讯作者: 张伟强 E-mail:zmaizer@163.com
  • 作者简介:刘见,从事农业节水新技术推广与应用研究,E-mail: liujiancaas@163.com
  • 基金资助:
    国家重点研发计划(2017YFD0301102);中央级科研院所基本科研业务费专项(FIRI2018-01);国家现代农业产业技术体系建设专项资金(nycytx-02)

Effects of Chemical Regulating on Grain Harvest Quality and Water Use Efficiency in Summer Maize

Liu Jian1,2, Sun Bin1, Zhang Weiqiang2,3(), Feng Xiaoxi4, Zhang Jiyang2, Ning Dongfeng2, Qin Anzhen2, Liu Zhandong2, Qiao Miao1, Shen Hongli1, Xu Yan1   

  1. 1Xuchang Experiment and Extension Station of Farmland Water Conservancy, Xuchang 461000, Henan, China
    2Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, Henan, China
    3Henan Institute of Science and Technology for Development, Zhengzhou 450000, Henan, China
    4Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, Henan, China
  • Received:2019-10-08 Revised:2019-12-12 Online:2020-06-15 Published:2020-06-10
  • Contact: Weiqiang Zhang E-mail:zmaizer@163.com

摘要:

解析不同水分处理条件下,夏玉米粒收质量及水分利用效率的化学调控效应。以登海605和豫单9953为供试品种,设置植物生长调节剂(HK: 8~9片叶喷施植物生长调节剂,CK: 喷施同量清水)和灌水量25(W1)、45(W2)和65mm(W3)两因素试验,采用随机区组试验设计,分析比较调节剂下玉米粒收质量和水分利用效率的差异。结果表明,与CK相比,2个品种HK处理的秃尖长和总损失率均值分别下降12.08%和7.78%,百粒重和产量水分利用效率(WUEY)分别增加4.88%和3.65%。灌水量对2个品种的产量、WUEY、总损失量和总损失率影响极显著。植物生长调节剂和灌水量对豫单9953的破碎率表现出明显互作效应。籽粒含水率与耗水量呈极显著正相关(登海605,r=0.885**;豫单9953,r=0.872**),与土壤含水率呈显著或极显著相关(登海605,r=0.527*;豫单9953,r=0.683**)。兼顾节水增产和粒收质量,推荐8~9片叶时喷施植物生长调节剂、土壤水分下限设置为田间持水率的65%~70%、喷灌定额45mm作为黄淮平原井灌区夏玉米适宜田间栽培及灌水管理方案。

关键词: 植物生长调节剂, 喷灌, 玉米, 耗水量, 籽粒含水率

Abstract:

The effects of chemical regulating on water use efficiency (WUE) and grain harvest quality in summer maize were investigated under different irrigation treatments. Two popular maize varieties (Denghai 605 and Yudan 9953) were selected as experimental materials. Meanwhile, two factors, irrigation methods and plant growth regulator scheduling patterns were set. Plant growth regulator treatments included 8-9 leaves spraying regulator (Duntianbao, HK) and Control i.e. spray the same amount of water (CK). Irrigation treatments were comprised of 25mm (W1), 45mm (W2), 65mm (W3). The fixed irrigation was started when the soil moisture reached 70% field capacity and randomized complete block design was adopted. The results showed that compared to CK, the HK treatment decreased the mean of bare tip length and total loss rate by 12.08% and 7.78%, in contrast, increased 100-kernel weight and WUEY by 4.88% and 3.65%, respectively. Irrigation had extremely significant effects on yield, WUEY, total loss mass and total loss rate. Chemical regulation obviously interacted with irrigation to control grain broken rate of Yudan 9953. There is positive significant correlation between Grain moisture content and evapotranspiration with the correlation coefficients of 0.885 (Denghai 605) and 0.872 (Yudan 9953) as well as significantly or extremely significantly correlated with soil water content of 0.527 (Denghai 605) and 0.683 (Yudan 9953). It was concluded that 8-9 leaves spraying regulator, irrigating when the soil moisture content reached 65%-70% field capacity and spraying irrigation 45mm were the optimal recommendation of summer maize for the well-irrigated regions of Huang-Huai Plain.

Key words: Plant growth regulator, Sprinkler, Maize, Water consumption rate, Grain moisture content

图1

试验区日降雨量及温度变化"

图2

各处理不同生育期土壤含水率动态变化"

表1

植物生长调节剂和灌溉处理对产量及其构成因素的影响"

植物生长调节剂
Plant growth regulator
灌水量
Irrigation
登海605 Denghai 605 豫单9953 Yudan 9953
穗长
Ear length
(cm)
穗粗
Ear diameter
(cm)
秃尖长
Bare tip
length (cm)
百粒重
100-kernel
weight (g)
产量
Yield
(kg/hm2)
穗长
Ear length
(cm)
穗粗
Ear diameter
(cm)
秃尖长
Bare tip
length (cm)
百粒重
100-kernel
weight (g)
产量
Yield
(kg/hm2)
HK W1 19.8±0.4d 3.27±0.06c 1.25±0.05d 28.13±0.72d 9 652±109d 16.5±0.3b 4.11±0.08b 0.39±0.03c 24.1±0.8c 9 085±156c
W2 21.9±0.2a 4.14±0.10a 1.05±0.08e 34.47±0.41a 11 484±320a 17.3±0.2a 4.25±0.06a 0.31±0.01c 29.5±0.6a 10 773±383a
W3 20.6±0.2c 4.10±0.05ab 1.51±0.04b 32.43±0.90bc 10 343±248c 17.0±0.2a 4.01±0.02c 0.51±0.04b 28.2±1.1ab 9 683±216b
CK W1 19.0±0.3e 3.25±0.03c 1.43±0.07c 26.60±1.36e 9 453±112d 16.5±0.4b 4.04±0.03bc 0.49±0.02b 21.7±0.9d 8 887±317c
W2 21.5±0.3b 4.11±0.09ab 1.22±0.05d 33.13±0.69ab 11 002±241b 16.9±0.2ab 4.19±0.05a 0.35±0.05c 28.7±1.4a 10 502±220a
W3 19.8±0.2d 4.08±0.06b 1.63±0.04a 31.53±0.64c 10 271±421c 17.3±0.1a 3.97±0.10c 0.59±0.02a 26.9±0.7b 9 803±412b
植物生长调节剂
Plant growth regulator (R)
102.86** 6.78** 301.54** 10.68** 6.16* 0.01 6.62* 12.14** 14.01** 1.41
灌水量Irrigation (I) 408.94** 4 421.70** 792.43** 99.33** 93.59** 13.98** 41.52** 38.13** 86.64** 93.85**
植物生长调节剂×灌水量R×I 3.17 0.02 5.60 0.24 1.43 4.24* 0.13 0.81 1.36 1.48

表2

植物生长调节剂和灌水处理对玉米机械粒收收获质量的影响"

植物生长调节剂
Plant growth regulator
灌水量
Irrigation
登海605 Denghai 605 豫单9953 Yudan 9953
籽粒破碎率
Grain broken
rate (%)
杂质率
Impurity rate
(%)
总损失量
Total loss mass
(kg/hm2)
总损失率
Total loss rate
(%)
籽粒破碎率
Grain broken
rate (%)
杂质率
Impurity rate
(%)
总损失量
Total loss mass
(kg/hm2)
总损失率
Total loss rate
(%)
HK W1 4.22±0.3c 1.64±0.6b 281±13cd 2.91±0.16b 3.63±0.10d 1.02±0.09e 196±17bc 2.15±0.17a
W2 5.46±0.4b 2.56±0.3a 265±19d 2.31±0.15d 4.18±0.22c 1.35±0.11c 178±12c 1.65±0.10b
W3 5.61±0.3b 3.10±0.3a 313±12ab 3.03±0.24ab 4.52±0.15b 1.59±0.13b 210±9ab 2.17±0.21a
CK W1 4.17±0.2c 1.82±0.2b 299±21bc 3.16±0.21ab 3.59±0.31d 1.07±0.07d 204±15b 2.29±0.22a
W2 5.09±0.3b 3.05±0.3a 289±12bcd 2.62±0.10c 4.12±0.25c 1.39±0.10c 192±11bc 1.83±0.18b
W3 6.27±0.5a 2.72±0.4a 327±10a 3.19±0.08a 4.76±0.19a 1.65±0.03a 229±13a 2.33±0.16a
植物生长调节剂
Plant growth regulator (R)
0.18 0.37 8.30* 13.91** 2.46 14.50** 6.85* 7.56*
灌水量Irrigation (I) 51.30** 20.50** 16.15** 39.53** 376.80** 601.70** 15.30** 33.78**
植物生长调节剂×灌水量R×I 3.20 2.16 0.20 0.51 10.38** 0.13 0.39 0.05

表3

不同处理玉米水分利用效率"

植物生长调节剂
Plant growth regulator
灌水量
Irrigation
登海605 Denghai 605 豫单9953 Yudan 9953
耗水量
Water consumption (mm)
产量水分利用效率
Yield water use efficiency (kg/m3)
叶片水分利用效率
Leaf water use efficiency
(μmol/mmol)
籽粒含水率
Grain moisture content (%)
耗水量
Water consumption (mm)
产量水分利用效率
Yield water use efficiency(kg/m3)
叶片水分利用效率
Leaf water use efficiency
(μmol/mmol)
籽粒含水率
Grain moisture content (%)
HK W1 337±11d 2.86±0.06bc 5.6±0.2a 23.3±0.6d 296±18d 3.07±0.05b 6.2±0.3a 20.4±1.2c
W2 374±9c 3.07±0.04a 5.1±0.1b 25.4±0.8c 330±12c 3.26±0.06a 5.7±0.1bc 23.0±0.3ab
W3 389±5b 2.66±0.06de 5.2±0.1b 27.5±0.9a 360±8a 2.68±0.14d 5.3±0.1c 24.0±0.5a
CK W1 341±13d 2.78±0.09cd 5.5±0.1a 24.2±0.6d 303±11d 2.93±0.03c 6.0±0.2ab 21.0±0.9c
W2 378±4c 2.91±0.06b 4.9±0.1b 26.2±1.0bc 332±14c 3.16±0.09ab 5.6±0.2bc 22.5±0.2b
W3 397±2a 2.59±0.10e 5.0±0.2b 27.3±0.4ab 376±20a 2.61±0.09d 5.3±0.1c 23.9±0.6a
植物生长调节剂
Plant growth regulator (R)
18.72** 11.22** 1.90 2.55 6.00* 8.85* 0.40 1.40
灌水量Irrigation (I) 694.10** 43.54** 13.50** 47.58** 145.50** 90.23** 17.08** 81.20**
植物生长调节剂×灌水量R×I 1.03 0.72 0.02 1.57 1.50 0.20 0.13 0.70

表4

玉米籽粒含水率和其他参数的相关性分析"

参数
Variable
籽粒含水率
Grain moisture content
籽粒破碎率
Grain broken rate
土壤含水率
Soil moisture content
耗水量
Water consumption
杂质率
Impurity rate
总损失量
Total loss mass
总损失率
Total loss rate
籽粒破碎率Grain broken rate 0.771**(0.891**
土壤含水率Soil moisture content 0.527*(0.683** -0.508*(0.587*
耗水量Water consumption 0.885**(0.872** -0.937**(0.906** -0.604**(0.600**
杂质率Impurity rate 0.772**(0.901** -0.655**(0.759** -0.378(0.690** 0.702**(0.823**
总损失量Total loss mass 0.490*(0.290) -0.441(0.468) -0.175(0.226) 0.541*(0.528* -0.210(0.312)
总损失率Total loss rate 0.083(-0.072) -0.017(0.051) -0.043(0.076) 0.102(0.126) -0.187(-0.082) -0.837**(0.867**
产量Yield 0.385(0.476* -0.515*(0.463) -0.265(0.127) 0.415(0.395) -0.537*(0.515* -0.324(-0.388) -0.786**(-0.794**

图3

玉米籽粒含水率与耗水量的关系 DH605和YD9953分别代表登海605和豫单9953,下同"

图4

玉米籽粒含水率与收获时土壤含水率的关系"

[1] 赵久然, 王荣焕 . 中国玉米生产发展历程、存在问题及对策. 中国农业科技导报, 2013,15(3):1-6.
[2] Zhao J, Yang X, Sun S . Constraints on maize yield and yield stability in the main cropping regions in China. European Journal of Agronomy, 2018,99:106-115.
doi: 10.1016/j.eja.2018.07.003
[3] Xu C L, Gao Y B, Tian B J , et al. Effects of EDAH,a novel plant growth regulator,on mechanical strength,stalk vascular bundles and grain yield of summer maize at high densities. Field crops Research, 2017,200:71-79.
doi: 10.1016/j.fcr.2016.10.011
[4] Niu J, Liu Q, Kang S Z , et al. The response of crop water productivity to climatic variation in the upper-middle reaches of the Heihe River basin,Northwest China. Journal of Hydrology, 2018,563:909-926.
doi: 10.1016/j.jhydrol.2018.06.062
[5] 高尚, 明博, 慕兰 , 等. 黄淮海平原南部玉米机械粒收现状及技术应用前景的生态分析——以河南省为例. 玉米科学, 2019,27(2):129-137.
[6] Cohen I, Netzer Y, Sthein I , et al. Plant growth regulators improve drought tolerance,reduce growth and evapotranspiration in deficit irrigated Zoysia japonica under field conditions. Plant Growth Regulation, 2019,88:9-17.
doi: 10.1007/s10725-019-00484-4
[7] 苑学亮 . 不同化学及营养调控措施对作物生长及水肥利用效率的影响. 杨凌:西北农林科技大学, 2009.
[8] 鱼彩彦 . 氮肥及化学调控对旱地冬小麦生长及水肥利用效率的影响. 杨凌:西北农林科技大学, 2012.
[9] Yu H Y, Zhang Y S, Xie Y , et al. Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability. Journal of Plant Physiology, 2017,214:123-133.
doi: 10.1016/j.jplph.2017.04.008
[10] 李少昆, 王克如, 杨利华 , 等. 河北夏播区玉米机械粒收质量及影响因素研究. 玉米科学, 2019,27(2):120-128.
[11] 黄兆福, 明博, 王克如 , 等. 辽河流域玉米籽粒脱水特点及适宜收获期分析. 作物学报, 2019,45(6):922-931.
doi: 10.3724/SP.J.1006.2019.83062
[12] Gambin B L, Borras L, Otegui M E . Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Research, 2007,101:1-9.
doi: 10.1016/j.fcr.2006.09.001
[13] 王克如, 李少昆 . 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017,50(11):2027-2035.
doi: 10.3864/j.issn.0578-1752.2017.11.008
[14] 徐田军, 吕天放, 陈传永 , 等. 种植密度和植物生长调节剂对玉米茎秆性状的影响及调控. 中国农业科学, 2019,52(4):629-638.
doi: 10.3864/j.issn.0578-1752.2019.04.005
[15] 任红, 周培禄, 赵明 , 等. 不同类型化控剂对春玉米产量及生长发育的调控效应. 玉米科学, 2017,25(2):81-85.
[16] 李少昆, 王克如, 王立春 , 等. 吉林玉米机械粒收质量影响因素研究及品种筛选. 玉米科学, 2018,26(4):55-62.
[17] 叶德练, 王玉斌, 周琳 , 等. 乙烯利和氮肥对夏玉米氮素吸收与利用及产量的调控效应. 作物学报, 2015,41(11):1701-1710.
[18] 李东, 赵晶晶, 郑殿峰 , 等. 植物生长调节剂对春玉米子粒建成及产量的影响. 玉米科学, 2016,24(6):47-54.
[19] 刘守阳, 汪有科, 赵霞 , 等. 植物生长调节剂对梨枣节水增产效益的影响. 西北农林科技大学学报(自然科学版), 2012,40(12):184-190.
[20] Hutsch B W, Schubert S . Maize harvest index and water use efficiency can be improved by inhibition of gibberellin biosynthesis. Journal of Agronomy and Crop Science, 2017,204(2):209-218.
doi: 10.1111/jac.2018.204.issue-2
[21] 于文颖, 纪瑞鹏, 冯锐 , 等. 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应. 生态学报, 2015,35(9):2902-2909.
doi: 10.5846/stxb201306101632
[22] Zhao W, Sun Y, Kjelgren R , et al. Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiologiae Plantarum, 2015,37(1):1704.
doi: 10.1007/s11738-014-1704-8
[23] 周怀林, 周广胜 . 玉米叶片水分利用效率的保守性. 生态学报, 2019,39(6):2156-2167.
doi: 10.5846/stxb201804020736
[24] Lawson T, Blatt M R . Stomatal size,speed,and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 2014,164(4):1556-1570.
doi: 10.1104/pp.114.237107
[25] 王克如, 李少昆 . 玉米机械粒收破碎率研究进展. 中国农业科学, 2017,50(11):2018-2026.
doi: 10.3864/j.issn.0578-1752.2017.11.007
[26] Gu R L, Huang R, Guang Y J , et al. Effect of mechanical threshing on damage and vigor of maize seed threshed at different moisture contents. Journal of Integrative Agriculture, 2019,18(7):1571-1578.
doi: 10.1016/S2095-3119(18)62026-X
[27] 柴宗文, 王克如, 郭银巧 , 等. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017,50(11):2036-2043.
doi: 10.3864/j.issn.0578-1752.2017.11.009
[28] Maiorano A, Mancini M C . Water relationships and temperature interactions in maize grain during maturation. Field Crops Research, 2010,119(2/3):304-307.
doi: 10.1016/j.fcr.2010.07.019
[29] Zhang Y, Wang J D, Gong S H , et al. Effects of film mulching on evapotranspiration,yield and water use efficiency of a maize field with drip irrigation in Northeastern China. Agricultural Water Management, 2018,205:90-99.
doi: 10.1016/j.agwat.2018.04.029
[30] 姬祥祥, 徐芳, 刘美含 , 等. 土壤水基质势膜下滴灌春玉米生长和耗水特性研究. 农业机械学报, 2018,49(11):230-239.
[1] 宋秋来, 王麒, 冯延江, 孙羽, 曾宪楠, 来永才. 寒地水旱轮作及秸秆还田对土壤相关酶活性的影响[J]. 作物杂志, 2020, (3): 149–153
[2] 李瑞杰,唐会会,王庆燕,许艳丽,房孟颖,闫鹏,董志强,张凤路. 5-氨基乙酰丙酸和乙烯利复配剂对东北春玉米光合特性及产量的影响[J]. 作物杂志, 2020, (2): 125–133
[3] 陈迪文,周文灵,敖俊华,黄莹,江永,韩西红,秦益民,沈宏. 海藻提取物对甜玉米产量、品质及氮素利用的影响[J]. 作物杂志, 2020, (2): 134–139
[4] 严华,晏中文,雷杰. 新源县1981-2018年气候变化特征及其对春玉米的影响[J]. 作物杂志, 2020, (2): 140–146
[5] 周伟,崔福柱,段宏凯,郝国花,杨慧,刘芮芮. 播期对糯玉米籽粒产量及品质的影响[J]. 作物杂志, 2020, (2): 156–161
[6] 卫晓轶,王稼苜,马毅,马俊峰,洪德峰,魏锋. 玉米机械化籽粒收获组合鉴定与主成分分析[J]. 作物杂志, 2020, (2): 48–53
[7] 孙瑞东,臧振原,慈佳宾,杨巍,任雪娇,姜良宇,杨伟光. 玉米自交系对大斑病菌的抗性鉴定及抗性来源分析[J]. 作物杂志, 2020, (2): 65–70
[8] 许瀚林,刘瑶,袁晓峰,潘婕,瓮巧云,吕爱枝,刘颖慧. 气候变化对冀西北青贮玉米种植布局影响的预测[J]. 作物杂志, 2020, (1): 124–129
[9] 司雷勇,夏镇卿,金岩,陈广周,王广福,路海东,薛吉全. 覆盖方式对旱地春玉米根冠生长及水分利用效率的影响[J]. 作物杂志, 2020, (1): 146–153
[10] 白岚方,张向前,王瑞,王雅楠,叶雪松,王玉芬,李娟,张德健. 不同玉米品种光合特性及青贮产量品质的差异性研究[J]. 作物杂志, 2020, (1): 154–160
[11] 陈宗培,薛佳欣,李奔,王贵彦. 玉米光合特性和冠层微环境对密度和行株距配置的响应[J]. 作物杂志, 2020, (1): 179–186
[12] 李忠南,张晓慧,王越人,张艳辉,邬生辉,许正学,李光发. 玉米DH系第一代种子休眠性的遗传[J]. 作物杂志, 2020, (1): 194–198
[13] 张新,曹丽茹,魏良明,张前进,周柯,王振华,鲁晓民. 玉米葡萄糖转运蛋白基因ZmGLUT-1表达特征分析及互作预测[J]. 作物杂志, 2020, (1): 22–28
[14] 谭友斌. 援西非农业项目玉米育种的策略建议与探讨[J]. 作物杂志, 2020, (1): 9–12
[15] 刁生鹏,高日平,高宇,任永峰,赵沛义,袁伟,高学峰. 内蒙古黄土高原秸秆还田对玉米农田土壤水热状况及产量的影响[J]. 作物杂志, 2019, (6): 83–89
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!