作物杂志,2024, 第4期: 33–42 doi: 10.16035/j.issn.1001-7283.2024.04.005

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

甜菜C2H2型锌指蛋白转录因子家族全基因组鉴定及镉胁迫下的表达分析

姚琦1,2,3(), 王皓2,3, 徐翎清2,3, 兴旺2,3, 刘大丽2,3, 鲁振强1()   

  1. 1黑龙江省寒区植物基因与生物发酵重点实验室/黑龙江大学生命科学学院,150080,黑龙江哈尔滨
    2国家甜菜种质中期库/黑龙江大学现代农业与生态环境学院,150080,黑龙江哈尔滨
    3黑龙江大学省高校甜菜遗传育种重点实验室/现代农业与生态环境学院,150080,黑龙江哈尔滨
  • 收稿日期:2023-05-06 修回日期:2023-08-22 出版日期:2024-08-15 发布日期:2024-08-14
  • 通讯作者: 鲁振强,研究方向为植物分子生物学,E-mail:zhenqianglu@163.com
  • 作者简介:姚琦,研究方向为寒区作物生物技术与遗传工程,E-mail:15714511208@163.com
  • 基金资助:
    黑龙江省自然科学基金(LH2019C057);国家糖料产业技术体系项目(CARS-170102);黑龙江省教育厅基本科研业务费(2022-KYYWF-1070)

Genome-Wide Identification and Expression Analysis of C2H2 Zinc-Finger Protein Transcription Factor Family in Sugar Beet under Cadmium Stress

Yao Qi1,2,3(), Wang Hao2,3, Xu Lingqing2,3, Xing Wang2,3, Liu Dali2,3, Lu Zhenqiang1()   

  1. 1Province Key Laboratory of Plant Gene and Biological Fermentation in Cold Regions / College of Life Sciences, Heilongjiang University, Harbin 150080, Heilongjiang, China
    2National Beet Medium-Term Gene Bank / College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, Heilongjiang, China
    3Key Laboratory of Sugar Beet Genetics and Breeding / College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, Heilongjiang, China
  • Received:2023-05-06 Revised:2023-08-22 Online:2024-08-15 Published:2024-08-14

摘要:

甜菜作为一类新兴的能源作物,在重金属污染土壤的修复中具有潜在的优势。探究镉胁迫下甜菜的应答机制,对于培育耐重金属胁迫的甜菜新种质以及生态修复具有重大意义。锌指蛋白转录因子(zinc-finger protein transcription factor)是植物中广泛存在的基因家族,全方面参与植物的生长发育,并响应生物和非生物胁迫。本研究通过全基因组鉴定以及理化性质、基因结构、保守基序、染色体定位和顺式作用元件分析发现,甜菜体内共有32个C2H2型锌指蛋白转录因子家族成员,可分为3个亚族,各成员具有数量不等的锌指结构域且不同亚族成员的基因结构及序列特征存在较大差异。通过对镉胁迫下的甜菜C2H2型锌指蛋白转录因子的表达和差异表达基因的调控网络分析发现,BVRB_6g137660、BVRB_8g189640、BVRB_1g000840和BVRB_007840在镉胁迫下表达量均不同程度上调,且可能调控了镉胁迫下甜菜金属耐受蛋白及ABC转运蛋白等重要基因的表达,推测这些转录因子在提高甜菜镉耐受性方面起到了关键作用。

关键词: 甜菜, 锌指蛋白, 镉胁迫, 转录因子

Abstract:

As an emerging energy crop, sugar beet has potential advantages in the remediation of heavy metal polluted soil. Exploring the response mechanism of sugar beet under cadmium stress is of great significance for breeding new germplasm resistant to heavy metal stress and ecological restoration. Zinc-finger protein transcription factor is a widely existing gene family in plants, which takes part in plant growth and development in various aspects and responds to biological and abiotic stresses. Through genome-wide identification and analysis of physicochemical properties, gene structure, conserved motifs, chromosome location and cis-element, we found that there were 32 members of the C2H2 zinc-finger protein transcription factor family in sugar beet, which could be divided into three subfamilies. Each member had different zinc-finger domains in different numbers, and the gene structure and sequence characteristics of different subfamilies were significantly different. By analyzing the expression of C2H2 zinc-finger protein transcription factors and the regulatory network of differentially expressed genes in sugar beet under cadmium stress, we found that the expression levels of BVRB_6g137660, BVRB_8g189640, BVRB_1g000840 and BVRB_007840 were up-regulated to varying degrees under cadmium stress. Speculating that these transcription factors play a key role in improving the cadmium tolerance of sugar beet.

Key words: Sugar beet, Zinc-finger protein, Cadmium stress, Transcription factor

表1

甜菜C2H2型锌指蛋白家族成员理化性质及亚细胞定位

基因ID
Gene ID
转录本ID
Transcript ID
氨基酸数量
Number of amino acids
分子量
Molecular weight (u)
等电点
Isoelectric point
不稳定系数
Instability index
亚细胞定位
Subcellular localization
BVRB_1g018520 KMT00022 366 41 146.19 8.46 70.84 细胞核
BVRB_6g136840 KMT08971 534 59 773.12 9.10 59.57 细胞核
BVRB_9g212520 KMT01234 342 37 043.98 8.84 71.81 细胞外,细胞核
BVRB_5g113850 KMT10727 563 62 233.31 8.77 56.24 细胞核
BVRB_1g012990 KMT19293 456 50 064.47 5.93 60.88 细胞核
BVRB_9g206210 KMT02271 343 37 459.07 6.24 60.35 细胞核
BVRB_7g179220 KMS97061 340 37 135.81 7.75 55.44 细胞核
BVRB_8g189640 KMT03820 242 25 661.67 8.09 53.01 细胞核
BVRB_1g015270 KMT19130 275 29 083.48 8.78 60.67 细胞核
BVRB_2g037310 KMT17528 186 20 667.45 8.86 57.60 细胞核
BVRB_1g018510 KMT00021 523 56 286.76 6.37 51.56 细胞核
BVRB_7g174490 KMT05313 231 25 076.07 5.84 38.19 细胞核
BVRB_2g046350 KMS99266 543 60 544.44 7.17 39.85 细胞核
BVRB_5g111450 KMT11057 237 26 905.18 8.52 59.79 细胞核
BVRB_6g147790 KMT07654 226 25 663.52 9.10 62.68 细胞核
BVRB_5g106070 KMT11669 187 21 346.69 5.52 59.95 细胞核
BVRB_6g130850 KMT09633 208 22 645.27 8.60 47.07 细胞核
BVRB_3g067630 KMS98868 154 17 264.82 5.64 63.00 细胞核
BVRB_3g067720 KMS98878 247 27 624.67 9.20 45.64 细胞核
BVRB_007850 KMS95480 371 41 815.85 6.12 41.96 细胞核
BVRB_3g068910 KMS98817 309 34 263.02 8.70 58.91 细胞核
BVRB_3g063640 KMT15255 323 35 834.41 8.56 58.90 细胞核
BVRB_6g138130 KMT08530 1460 164 803.16 6.37 42.75 细胞核
BVRB_016580 KMS94655 176 19 758.12 6.15 48.27 细胞核
BVRB_6g141700 KMT08346 247 25 923.68 8.64 68.65 细胞核
BVRB_007840 KMS95479 414 46 178.78 8.58 53.94 细胞核
BVRB_007870 KMS95482 370 41 964.66 8.12 44.37 细胞核
BVRB_007880 KMS95483 406 45 560.31 7.52 46.30 细胞核
BVRB_1g000840 KMT20065 513 57 833.77 5.84 49.07 细胞核
BVRB_6g137660 KMT09067 559 58 440.17 8.62 72.22 细胞核
BVRB_042870 KMS64767 88 10 142.79 11.72 50.60 叶绿体,线粒体,细胞核
BVRB_5g123490 KMS97785 641 73 777.76 5.00 56.65 高尔基体,细胞核

图1

甜菜C2H2型锌指蛋白家族进化树

图2

甜菜C2H2型锌指蛋白家族成员的进化树(a)、保守基序(b)、结构域(c)和基因结构(d)分析

图3

甜菜C2H2型锌指蛋白家族成员的保守基序序列

图4

甜菜、拟南芥、水稻的C2H2型锌指蛋白系统发育树 粉色为甜菜,绿色为拟南芥,蓝色为水稻。

图5

甜菜C2H2型锌指蛋白家族成员的染色体定位 染色体颜色表示基因密度,颜色越红密度越高,颜色越蓝密度越低。

图6

甜菜C2H2型锌指蛋白转录因子启动子顺式作用元件分析

图7

甜菜C2H2型锌指转录因子表达热图

图8

甜菜C2H2型锌指转录因子与靶基因调控网络图

[1] Cui H Y, Chen J Q, Liu M J, et al. Genome-wide analysis of C2H2 zinc-finger gene family and its response to cold and drought stress in sorghum [Sorghum bicolor (L.) Moench]. International Journal of Molecular Sciences, 2022, 23(10):55-71.
[2] Han G L, Lu C X, Guo J R, et al. C2H2 zinc-finger proteins:Master regulators of abiotic stress responses in plants. Frontiers in Plant Science, 2020, 11:115.
[3] Englbrecht C C, Schoof H, Böhm S. Conservation, diversification and expansion of C2H2 zinc-finger proteins in the Arabidopsis thaliana genome. BMC Genomics, 2004, 5(1):39.
doi: 10.1186/1471-2164-5-39 pmid: 15236668
[4] Agarwal P, Arora R, Ray S, et al. Genome-wide identification of C2H 2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Molecular Biology, 2007, 65(4):467-485.
doi: 10.1007/s11103-007-9199-y pmid: 17610133
[5] Weng L, Zhao F F, Li R, et al. The zinc-finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato. Plant Physiology, 2015, 167(3):931-949.
doi: 10.1104/pp.114.255174 pmid: 25637453
[6] Liu Q G, Wang Z C, Xu X M, et al. Genome-wide analysis of C2H 2 zinc-finger family transcription factors and their responses to abiotic stresses in poplar (Populus trichocarpa). PLoS ONE, 2015, 10(8):e134753.
[7] Li Y, Chu Z N, Luo J Y, et al. The C2H2 zinc-finger protein SlZF3 regulates AsA synthesis and salt tolerance by interacting with CSN5B. Plant Biotechnology Journal, 2018, 16(6):1201-1213.
doi: 10.1111/pbi.12863 pmid: 29193661
[8] Lyu T Q, Liu W M, Hu Z W, et al. Molecular characterization and expression analysis reveal the roles of Cys2/His2 zinc-finger transcription factors during flower development of Brassica rapa subsp. chinensis. Plant Molecular Biology, 2020, 102(1/2):123-141.
[9] 井建玲, 张鹏, 王振宇, 等. 木薯C2H2型锌指蛋白转录因子家族全基因组鉴定及表达分析. 植物生理学报, 2020, 56(12):2664-2676.
[10] Liu Z, Coulter J A, Li Y, et al. Genome-wide identification and analysis of the Q-type C2H2 gene family in potato (Solanum tuberosum L.). International Journal of Biological Macromolecules, 2020, 153:327-340.
[11] 李琳, 丁峰, 潘介春, 等. 植物锌指蛋白转录因子家族研究进展. 热带农业科学, 2020, 40(2):65-75.
[12] Zhang C, Tong C, Cao L, et al. Regulatory module WRKY33‐ ATL31‐IRT 1 mediates cadmium tolerance in Arabidopsis. Plant,Cell and Environment, 2023, 46(5):1653-1670.
[13] Ashfaq A, Khan Z I, Ahmad K. Assessing the health risk of cadmium to the local population through consumption of contaminated vegetables grown in municipal solid waste- amended soil. Environmental Monitoring and Assessment, 2022, 194(7):468.
doi: 10.1007/s10661-022-10104-w pmid: 35648302
[14] Chen J, Yang L B, Yan X X, et al. Zinc-finger transcription factor ZAT 6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiology, 2016, 171(1):707-719.
[15] Dang F F, Li Y Y, Wang Y F, et al. ZAT10 plays dual roles in cadmium uptake and detoxification in Arabidopsis. Frontiers in Plant Science, 2022, 13:994100.
[16] Dohm J C, Minoche A E, Holtgräwe D, et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 2014, 505(7484):546-549.
[17] 王锦霞, 马龙彪, 刘大丽. 甜菜在重金属污染生物修复中的应用潜力. 哈尔滨:中国农业科学院甜菜研究所, 2018:77-80.
[18] Chen C J, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[19] Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7):1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[20] Puentes-Romero A C, González S A, González-Villanueva E, et al. AtZAT4,a C2H2-type zinc-finger transcription factor from Arabidopsis thaliana, is involved in pollen and seed development. Plants-Basel, 2022, 11(15):1974.
[21] Liu Y, Khan A R, Gan Y. C2H 2 zinc-finger proteins response to abiotic stress in plants. International Journal of Molecular Sciences, 2022, 23(5):2730.
[22] Xu G, Guo C, Shan H, et al. Divergence of duplicate genes in exon-intron structure. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(4):1187-1192.
[23] Yi G, Neelakandan A K, Gontarek B C, et al. The naked endosperm genes encode duplicate indeterminate domain transcription factors required for maize endosperm cell patterning and differentiation. Plant Physiology, 2015, 167(2):443-456.
doi: 10.1104/pp.114.251413 pmid: 25552497
[24] Seo P J, Ryu J, Kang S K, et al. Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. The Plant Journal, 2011, 65(3):418-429.
[25] Ingkasuwan P, Netrphan S, Prasitwattanaseree S, et al. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model. BMC Systems Biology, 2012, 6(1):100.
[26] Coelho C P, Huang P, Lee D, et al. Making roots, shoots, and seeds: IDD gene family diversification in plants. Trends in Plant Science, 2018, 23(1):66-78.
doi: S1360-1385(17)30204-2 pmid: 29056440
[27] Kundu A, Das S, Basu S, et al. GhSTOP1,a C2H 2 type zinc- finger transcription factor is essential for aluminum and proton stress tolerance and lateral root initiation in cotton. Plant Biology, 2019, 21(1):35-44.
doi: 10.1111/plb.12895 pmid: 30098101
[28] Kobayashi Y, Ohyama Y, Kobayashi Y, et al. STOP2 activates transcription of several genes for Al-and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Molecular Plant, 2014, 7(2):311-322.
doi: 10.1093/mp/sst116 pmid: 23935008
[29] El-Sappah A H, Elrys A S, Desoky E M, et al. Comprehensive genome wide identification and expression analysis of MTP gene family in tomato (Solanum lycopersicum) under multiple heavy metal stress. Saudi Journal of Biological Sciences, 2021, 28(12):6946-6956.
doi: 10.1016/j.sjbs.2021.07.073 pmid: 34866994
[30] 李丹丹. 马铃薯金属耐受蛋白(StMTPs)核心特征分析及StMTP8耐镉功能验证. 贵阳: 贵州大学, 2022.
[31] He X L, Feng T Y, Zhang D Y, et al. Identification and comprehensive analysis of the characteristics and roles of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in Sedum alfredii hance responding to cadmium stress. Ecotoxicology and Environmental Safety, 2019, 167:95-106.
[32] Li H, Li C, Sun D, et al. OsPDR20 is an ABCG metal transporter regulating cadmium accumulation in rice. Journal of Environmental Sciences, 2024, 136:21-34.
doi: 10.1016/j.jes.2022.09.021 pmid: 37923431
[1] 李智, 郭晓霞, 黄春燕, 菅彩媛, 田露, 韩康, 任霄云, 任惠敏, 张鹏, 刘佳, 孔德娟, 王珍珍, 苏文斌. 浅埋滴灌条件下氮肥基追比对甜菜生长、产量和含糖率的影响[J]. 作物杂志, 2024, (3): 186–191
[2] 杜含梅, 谭露, 陈勃, 于秋竹, 吴丹丹, 王安虎. 苦荞苗期镉耐受性综合评价[J]. 作物杂志, 2024, (2): 40–53
[3] 吕宝莲, 杨宇昕, 崔立操, 史峰, 马亮, 孔秀英, 张立超, 倪志勇. 小麦bHLH家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J]. 作物杂志, 2024, (1): 65–72
[4] 张瀚文, 刘丹, 王雪瑞, 李望舒, 卢强, 王树峰, 赵佳楠, 王玉波, 张贺, 李彩凤. 盐碱胁迫下不同时期叠加喷施BR 对甜菜产量和品质的作用效果[J]. 作物杂志, 2023, (4): 237–244
[5] 尹希龙, 石杨, 李王胜, 兴旺. 甜菜幼苗光合生理对干旱胁迫的响应[J]. 作物杂志, 2022, (6): 152–158
[6] 李王胜, 王雪倩, 尹希龙, 石杨, 刘大丽, 谭文勃, 兴旺. 甜菜种质资源苗期耐旱性综合评价[J]. 作物杂志, 2022, (6): 54–60
[7] 杜甫, 夏茂林, 刘新源, 于兆锦, 张展, 刘云飞, 姬小明. 丙烯酰胺/羧甲基纤维素/生物炭复合水凝胶对烟苗镉胁迫的缓解效应研究[J]. 作物杂志, 2022, (4): 138–145
[8] 姜玉松, 李洪雷, 李哲馨, 徐晓玉, 李隆云, 黄孟军. 基于转录组数据的生姜ZoWRKY基因家族鉴定及逆境响应分析[J]. 作物杂志, 2022, (4): 37–45
[9] 蔡琪琪, 王堽, 董寅壮, 於丽华, 王宇光, 耿贵. 不同中性盐胁迫对甜菜幼苗光合作用和抗氧化酶系统的影响[J]. 作物杂志, 2022, (1): 130–136
[10] 张婷, 张博文, 李国龙, 曹阳, 李悦, 张少英. 磷酸二铵施用量及方式对甜菜光合性能和产量的影响[J]. 作物杂志, 2021, (5): 187–193
[11] 丁刘慧子, 邳植, 吴则东. 甜菜品种SSR指纹图谱的构建及遗传多样性分析[J]. 作物杂志, 2021, (5): 72–78
[12] 王堽, 於丽华, 赵慧杰, 刘钰, 耿贵. 不同时期NaCl胁迫对甜菜生长及光合作用的影响[J]. 作物杂志, 2021, (4): 99–104
[13] 王通, 赵孝东, 甄萍萍, 陈静, 陈明娜, 陈娜, 潘丽娟, 王冕, 许静, 禹山林, 迟晓元, 张建成. 花生TCP转录因子的全基因组鉴定及组织表达特性分析[J]. 作物杂志, 2021, (2): 35–44
[14] 韩多红, 王恩军, 张勇, 王红霞, 王艳, 王富. 干旱胁迫下外源亚精胺、甜菜碱对菘蓝种子萌发和幼苗生理特性的影响[J]. 作物杂志, 2021, (1): 118–123
[15] 李国龙, 吴海霞, 孙亚卿. 甜菜BvWRKY23基因的RNAi载体构建[J]. 作物杂志, 2020, (5): 41–47
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!