作物杂志,2025, 第2期: 189–195 doi: 10.16035/j.issn.1001-7283.2025.02.026

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

CO2加富和供磷水平对辣椒苗期生长及营养元素吸收的影响

雷云(), 刘月炎, 王健健()   

  1. 贵州大学生命科学学院/农业生物工程研究院/山地植物资源保护与种质创新教育部重点实验室,550025,贵州贵阳
  • 收稿日期:2023-10-09 修回日期:2023-11-20 出版日期:2025-04-15 发布日期:2025-04-16
  • 通讯作者: 王健健
  • 作者简介:雷云,研究方向为植物生理生态,E-mail:504149938@qq.com
  • 基金资助:
    国家自然科学基金“喀斯特地区典型药用植物对气候变化的响应及其气候调控机制研究”(31760155);贵州省生物学一流学科建设项目“大气CO2浓度升高对几种药用植物生长及品质的影响”(GNYL[2017]009)

Effects of CO2 Enrichment and Phosphorus Level on Seedling Growth and Nutrient Element Absorption of Capsicum anmuum L.

Lei Yun(), Liu Yueyan, Wang Jianjian()   

  1. College of Life Sciences, Guizhou University / Institute of Agro-Bioengineering / Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang 550025, Guizhou, China
  • Received:2023-10-09 Revised:2023-11-20 Online:2025-04-15 Published:2025-04-16
  • Contact: Wang Jianjian

摘要:

为探究CO2加富、供磷水平及二者交互作用对辣椒苗期生长及营养元素吸收的影响,以艳椒425为试验材料,在2个CO2浓度(自然CO2 400±30 μmol/mol、CO2加富800±30 μmol/mol)及3个供磷水平(0、50、250 mg/kg P)处理下,测定了辣椒形态指标、生物量及营养元素含量指标。结果表明,单独CO2加富或增加供磷水平及二者互作,均可促进辣椒形态生长及生物量积累。CO2加富或增加供磷水平可使辣椒根、茎、叶中C含量显著增加,N、K含量显著降低,施磷还促进辣椒对P的吸收。CO2加富可使辣椒C/N、C/K、C/P、N/P显著增大;供磷水平对辣椒各器官C/N、C/K无显著影响,C/P、N/P显著降低;与CK相比,CO2加富与施加磷肥交互处理下辣椒C/N显著增大,C/K、C/P、N/P均显著降低。CO2加富可增加辣椒整体Mg、Fe、Mn、Zn含量,减少Ca含量,供磷水平增加,可增加辣椒整体Ca、Mg、Fe、Zn含量,减少Mn含量,CO2加富和供磷水平增加互作可促进辣椒吸收Mg、Fe、Mn、Zn,抑制对Ca的吸收。综上所述,在实际生产过程中,适当提高CO2浓度、合理适量施用磷肥有利于辣椒生长及对土壤中营养元素的吸收。

关键词: CO2加富, 磷肥, 辣椒, 生长, 营养元素吸收

Abstract:

In order to explore the effects of CO2 enrichment, phosphorus supply level and their interaction on the seedling growth and nutrient element absorption of Capsicum anmuum L., Yanjiao 425 was used as the test material, and the morphological indexes, biomass and nutrient element content indexes of C.anmuum L. were determined under the treatment of two CO2 concentrations (natural CO2 concentration: 400±30 μmol/mol, CO2 enrichment: 800±30 μmol/mol) and three phosphorus supply levels (0, 50, and 250 mg/kg P). The results showed that CO2 enrichment alone, increasing phosphorus supply level alone, and their interaction all promoted the morphological growth and biomass accumulation of chili pepper. With CO2 enrichment or increase of phosphorus supply level, the content of C in roots, stems and leaves of chili pepper increased significantly, while the contents of N and K decreased significantly. Phosphorus application also promoted the absorption of P by chili pepper. CO2 enrichment could significantly increase C/N, C/K, C/P, N/P of chili pepper; the phosphorus supply level had no significant effect on C/N and C/K in all organs of chili pepper, and C/P and N/P were significantly reduced. Compared with CK, the interaction between CO2 enrichment and the application of phosphorus fertilizer significantly increased the C/N, and significantly reduced the C/K, C/P and N/P of chili pepper. CO2 enrichment could increase the overall contents of Mg, Fe, Mn, Zn in chili pepper, and reduce Ca content. Increasing phosphorus level could increase the overall contents of Ca, Mg, Fe and Zn in chili pepper and decrease Mn content. The interaction between CO2 enrichment and increasing phosphorus level could promote the absorption of Mg, Fe, Mn, Zn and inhibit the absorption of Ca. In summary, in the actual production process, the CO2 concentration can be appropriately increased, and the reasonable and appropriate application of phosphorus fertilizer is conducive to the growth of chili pepper and the absorption of nutrients in soil.

Key words: CO2 enrichment, Phosphorus fertilizer, Chili pepper, Growth, Nutrient element absorption

表1

CO2浓度与施磷处理的试验方案

处理
Treatment
CO2浓度
CO2 concentration (μmol/mol)
磷水平
Phosphorus level (mg/kg )
CK 400±30 0
CM 400±30 50
CH 400±30 250
EK 800±30 0
EM 800±30 50
EH 800±30 250

表2

CO2加富和施加磷肥对辣椒根系形态的影响

处理
Treatment
总根长
Total root length (cm)
主根直径
Taproot diameter (mm)
根表面积
Root surface area (cm2)
根体积
Root volume (cm3)
根尖数
Number of root tips
分叉数
Number of bifurcations
CK 1541.75±117.22d 0.53±0.03d 305.71±14.61d 5.09±0.42d 5335.33±55.63e 23 930.33±1383.46e
CM 1866.54±62.50c 0.60±0.03c 399.09±11.68c 6.34±0.63c 8372.33±126.50d 30 698.67±910.47d
CH 2485.72±79.70ab 0.62±0.03c 392.78±7.23c 6.47±0.37c 12 282.00±778.53a 48 327.00±612.77a
EK 1927.81±57.73c 0.67±0.06b 412.24±20.26c 6.34±0.62c 9892.00±389.91b 30 906.33±1431.80d
EM 2396.90±108.52b 0.69±0.01b 474.32±56.08b 8.23±0.66b 10 922.33±1115.61bc 36 300.67±606.31b
EH 2593.86±109.36a 0.79±0.05a 579.24±25.13a 9.69±0.48a 9435.44±2299.85c 35 335.72±8171.19c

表3

CO2加富和施加磷肥对辣椒地上部形态指标的影响

处理
Treatment
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
主茎高
Main stem
height (cm)
冠幅
Crown width
(cm)
叶长
Leaf length
(cm)
叶宽
Leaf width
(cm)
叶面积
Leaf area
(cm2)
叶周长
Leaf circumference
(cm)
CK 21.42±3.40e 4.24±0.22d 13.52±1.21b 19.10±1.77e 7.23±0.87 3.04±0.27 11.78±1.38 18.69±1.72
CM 23.74±3.41de 4.87±0.27c 14.00±2.21b 20.84±1.60de 8.27±1.43 3.36±0.04 15.14±1.29 21.91±1.91
CH 25.84±1.81cd 4.91±0.45c 14.64±1.28ab 23.20±2.34cd 8.44±1.73 3.61±0.12 17.90±2.06 23.38±1.14
EK 28.14±3.01bc 5.54±0.33b 14.98±0.64ab 25.24±3.89bc 7.31±0.69 3.41±0.10 14.89±0.69 20.60±0.47
EM 30.00±3.37b 5.86±0.43b 16.16±1.25a 27.07±2.67b 9.36±0.61 3.70±0.22 18.59±1.89 24.29±0.82
EH 35.14±5.21a 6.33±0.29a 16.28±0.91a 31.20±20.9a 11.33±0.12 4.19±0.17 25.65±1.75 30.00±1.22

表4

CO2加富和施加磷肥对辣椒生物量积累的影响

处理
Treatment
根生物量
Root biomass
茎生物量
Stem biomass
叶生物量
Leaf biomass
总生物量
Total biomass
CK 0.72±0.27d 0.80±0.08e 1.86±0.09d 3.38±0.38e
CM 1.06±0.15cd 1.25±0.08d 2.26±0.05c 4.57±0.15d
CH 1.13±0.26cd 1.36±0.10d 2.40±0.18c 4.89±0.36d
EK 1.43±0.41bc 1.79±0.10c 2.35±0.17c 5.57±0.48c
EM 1.69±0.49ab 2.08±0.12b 2.66±0.12b 6.43±0.41b
EH 2.09±0.32a 3.28±0.06a 3.78±0.06a 9.15±0.36a

表5

CO2加富和施加磷肥对辣椒C、N、P、K含量的影响

器官
Organ
处理
Treatment
C N P K

Root
CK 393.79±1.79c 32.94±0.65b 1.44±0.01c 37.84±1.26b
CM 404.26±0.41b 34.54±0.49a 4.07±0.05a 47.41±1.17a
CH 408.47±7.28b 34.11±0.31a 4.10±0.03a 48.50±0.66a
EK 419.82±3.13a 30.95±0.85c 1.32±0.03d 34.17±1.97c
EM 416.51±2.08a 30.21±0.18cd 3.22±0.04b 39.69±1.16b
EH 420.88±2.34a 29.95±0.28d 3.23±0.02b 30.45±1.27d

Stem
CK 60.78±6.70b 11.24±0.74a 1.09±0.04bc 75.94±3.69a
CM 63.87±10.10ab 12.09±1.09a 1.31±0.02a 44.58±3.23d
CH 75.66±5.84a 11.86±0.35a 1.34±0.04a 74.75±0.92a
EK 73.75±6.43a 7.47±0.13c 1.03±0.07c 68.14±3.41b
EM 74.21±3.20a 8.86±0.13b 1.12±0.13bc 57.98±3.02c
EH 71.14±1.60ab 8.16±0.35bc 1.18±0.02b 56.70±1.65c
CK 425.42±0.41c 85.77±0.54a 2.25±0.04d 74.11±7.13a

Leaf
CM 430.58±0.88bc 78.46±1.12b 4.84±0.03a 70.96±1.79a
CH 430.93±1.70bc 79.16±0.22b 4.85±0.04a 69.68±2.16a
EK 434.49±5.08ab 59.39±0.46e 1.88±0.04e 60.32±1.26b
EM 440.06±7.80a 64.14±0.23c 3.29±0.04b 59.23±1.71b
EH 438.52±4.83ab 61.29±0.33d 3.17±0.03c 52.54±3.21c

图1

CO2加富和施加磷肥对辣椒生态化学计量比的影响 不同小写字母表示在P < 0.05水平差异显著,下同。

表6

CO2加富和施加磷肥对辣椒Ca、Mg、Fe、Mn、Zn含量的影响

器官Organ 处理Treatment Ca Mg Fe Mn Zn
根Root CK 17.51±0.47c 3.42±0.59c 942.09±11.28d 1165.95±32.53a 509.59±2.61c
CM 28.54±0.25a 4.46±0.05b 1224.20±9.33b 996.30±17.24bc 449.47±5.24d
CH 25.43±0.77b 6.02±0.22a 1581.59±15.06a 963.58±29.55c 624.86±4.55b
EK 24.45±1.88b 4.55±0.69b 773.23±11.96e 963.04±4.76c 394.43±12.12e
EM 25.15±1.63b 4.82±0.67b 986.48±11.57c 1159.97±29.64a 764.14±49.34a
EH 25.26±1.75b 4.66±0.47b 922.18±24.29d 1036.28±14.43b 461.33±8.66d
茎Stem CK 17.93±0.18b 6.47±0.50b 153.20±4.23f 368.32±8.25e 134.10±11.70e
CM 12.78±0.79c 5.77±0.28c 339.90±11.60e 316.63±3.74f 126.66±4.99e
CH 20.43±0.07a 7.42±0.37a 387.42±7.90d 583.24±9.02b 202.04±7.36d
EK 13.50±0.39c 5.50±0.07c 844.43±5.88b 471.72±18.87c 343.03±13.40c
EM 13.08±0.96c 5.46±0.33c 678.45±10.38c 411.05±12.12d 885.77±7.76b
EH 11.20±0.41d 5.44±0.06c 931.09±4.11a 768.94±17.96a 912.48±4.86a
CK 22.99±2.61a 6.98±0.17c 230.92±6.08a 631.69±6.42d 367.67±8.66b
叶Leaf CM 19.71±0.66b 7.54±0.37a 165.55±1.90c 665.50±3.43c 429.89±11.66a
CH 19.64±0.42b 7.31±0.29ab 215.09±2.44b 739.34±17.39b 274.90±1.54c
EK 19.18±0.89b 7.54±0.36a 82.86±2.79e 735.86±13.40b 273.29±1.37c
EM 19.35±0.47b 7.57±0.23a 91.46±4.77d 753.60±7.68b 237.84±10.24d
EH 17.79±0.44b 7.18±0.08ab 86.81±4.61de 993.15±6.31a 244.49±5.90d
[1] 袁潮, 杨文艳, 孙卓, 等. 大气CO2浓度年际变化及其对农业的影响. 陕西农业科学, 2020, 66(9):91-96.
[2] Plattner G K. IPCC 2014: Climate Change 2014:Synthesis Report. Contribution of Working Groups Ⅰ, ⅠⅠ and Ⅲ to the fifth assessment report of the intergovernmental panel on climate change. Journal of Romance Studies, 2014, 4(2):85-88.
[3] 张凯, 王润元, 王鹤龄, 等. CO2浓度升高对半干旱区春小麦生长发育及产量影响的试验研究. 干旱气象, 2017, 35(2):306-312.
[4] 王娇, 李萍, 宗毓铮, 等. 大气CO2浓度和气温升高对玉米灌浆期碳氮代谢的影响. 中国生态农业学报, 2023, 31(2):325-335.
[5] 熊露露. CO2浓度和温度升高对薏苡生理生态特性的影响. 贵阳:贵州大学, 2022.
[6] Madhu M, Hatfield J L. Dynamics of plant root growth under increased atmospheric carbon dioxide. Agronomy Journal, 2013,105:657-669.
[7] 黄兴敏, 邓小红, 彭海兰, 等. CO2浓度和温度升高对吉祥草生理生态特性的影响. 北方园艺, 2022(14):101-108.
[8] 邓小红. CO2浓度、温度升高和氮沉降对吉祥草生理生态特性的影响. 贵阳:贵州大学, 2021.
[9] 王冰. 低磷条件下SAMS1对番茄根系生长和磷素利用的作用效果研究. 泰安:山东农业大学, 2022.
[10] 肖雨萌. 磷素营养水平对不同生育期菊芋生长及光合特性的影响. 兰州:兰州大学, 2018.
[11] Alewell C, Ringeval B, Ballabio C, et al. Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 2020, 11(1):4546.
[12] 杜涛. 贵州从“辣椒大省”迈向“辣椒强省”. 中国食品报, 2021-09-27(002).
[13] 王文富. 中国土壤. 北京: 中国农业出版社, 1998.
[14] 白晓珂. 氮添加、增温和降雨增加对黄土高原紫花苜蓿叶片化学计量学特征的影响. 兰州:兰州大学, 2019.
[15] 姬拉拉. 薏苡(Coix lacryma-jobi)对CO2浓度升高与氮肥施加的生理响应研究. 贵阳:贵州大学, 2021.
[16] Gielen B, Calfapietra C, Claus A, et al. Crown architecture of Populus spp. is differentially modified by free-air CO2 enrichment (POPFACE). New Phytologist, 2002, 153(1):91-99.
[17] 胡晓雪, 宗毓铮, 张仟雨, 等. CO2浓度升高对万寿菊生长发育与光合生理的影响. 核农学报, 2017, 31(6):1210-1216.
[18] 袁蕊, 聂磊云, 郝兴宇, 等. 大气CO2浓度升高对辣椒光合作用及相关生理特性的影响. 生态学杂志, 2017, 36(12):3510-3516.
[19] 高宇, 崔世茂, 宋阳, 等. CO2加富对温室辣椒幼苗生长及光合特性的影响. 作物杂志, 2017(5):80-84.
[20] Ainsworth E A, Rogers A, Vodkin L O, et al. The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiology, 2006, 142(1):135-147.
[21] 任朝辉, 田浩, 廖卫琴, 等. 磷肥不同施用量对辣椒生长农艺性状及产量的影响. 辣椒杂志, 2021, 19(1):10-13.
[22] Hada N, Wasnik V K, Bhadauria S S, et al. Influence of balanced nutrition, seed rate and plant geometry on fodder maize in south- eastern Rajasthan. Range Management and Agroforestry, 2017, 37(2):243-247.
[23] 刘士玲, 陈琳, 庞圣江, 等. 施N、P肥对西南桦无性系幼苗生长及叶片N、P含量的影响. 华南农业大学学报, 2020, 41(2):111-116.
[24] 肖列. CO2浓度升高、干旱胁迫和施氮对白羊草生长和根际微生物的影响. 杨凌:西北农林科技大学, 2015.
[25] 圣倩倩, 高顺, 顾舒文, 等. CO2浓度升高对植物生理生化影响的研究进展. 西部林业科学, 2021, 50(3):171-176.
[26] Padraic J F, Jeremy H, Mark G M. Natural genetic variation in plant photosynthesis. Trends in Plant Science, 2011, 16(6):327-335.
[27] 麻雪艳, 周广胜. 基于光合产物动态分配的玉米生物量模拟. 应用生态学报, 2016, 27(7):2292-2300.
[28] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Science of the United States of America, 2004, 101 (30):11001-11006.
[29] Taub D R, Wang X Z. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. Journal of Integrative Plant Biology, 2008, 50(11):1365-1374.
[30] 陈雨娇, 李汛, 田兴军, 等. CO2浓度与氮磷供应水平对黄瓜根系生长及各组织矿质养分含量的影响. 土壤, 2020, 52(6):1129-1138.
[31] 依里帆·艾克拜尔江, 李进, 庄伟伟. 两种荒漠豆科植物化学计量特征与生境土壤因子的关系. 西北植物学报, 2022, 42(8):1384-1395.
[32] 王佳, 冯晓淼, 芈书贞, 等. 模拟降雨量变化与CO2浓度升高对小麦光合特性和碳氮特征的影响. 水土保持研究, 2020, 27(1):328-334.
[33] 王雪梅, 闫帮国, 王梓丞, 等. 不同土壤和微量元素对车桑子幼苗生长的影响. 热带亚热带植物学报, 2023, 31(5):695-704.
[1] 伍露, 张皓, 杨霏云, 郭尔静, 斯林林, 曹凯, 程陈. WOFOST模型对江淮地区水稻生长发育模拟的适应性评价[J]. 作物杂志, 2025, (2): 215–221
[2] 李云霞, 杨佳蒴, 李洋洋, 向世鹏, 余金龙, 李斌, 郑维威, 刘璐. 不同移栽期对烟稻轮作烟区烤烟生长发育及产量和质量的影响[J]. 作物杂志, 2025, (2): 222–227
[3] 卢玉, 张妍妍, 陈海涛, 李满鑫, 白润娥, 雷彩燕. 外源亚精胺对烟粉虱―黄瓜互作的影响[J]. 作物杂志, 2025, (2): 256–264
[4] 景茂雅, 张子玉, 张萌, 合佳敏, 严翻翻, 高艳梅, 张永清. 水杨酸浸种对盐胁迫藜麦种子萌发及幼苗生长的影响[J]. 作物杂志, 2025, (1): 194–201
[5] 张宝龙, 何军, 张艺, 汤驰, 张宏涛, 廖薇, 李飞. 缓释肥对水稻生长特性、产量及干物质积累的影响[J]. 作物杂志, 2025, (1): 214–219
[6] 侯赛赛, 李畅, 李青云, 王鑫鑫. 不同供磷水平下大白菜的生长和磷吸收策略研究[J]. 作物杂志, 2025, (1): 220–226
[7] 王安, 陈湛旭, 孔景徐, 吴思源, 何绍威, 张嘉玲, 万巍. 基于改进ResNet18的植物生长阶段识别方法及智慧植物补光的实现[J]. 作物杂志, 2025, (1): 250–259
[8] 李斐, 边少锋, 徐晨, 赵洪祥, 宋杭霖, 王芙臣, 庄妍. 坡耕地垄侧栽培对玉米生理特性及生长发育的影响[J]. 作物杂志, 2024, (6): 120–125
[9] 李晓婷, 张婷婷, 张艳丽, 李志伟, 韩丽, 赵鑫瑶, 张永平, 李立军. 燕麦地上部可培养内生真菌多样性分析及其功能研究[J]. 作物杂志, 2024, (6): 194–204
[10] 鄂利锋, 徐金崇, 陈修斌, 权建华, 华军, 尹丽娟, 王舜奇, 赵文勤. 外源硅对盐胁迫下娃娃菜种子萌发及幼苗生理特性的影响[J]. 作物杂志, 2024, (6): 212–217
[11] 胡娅晴, 李春情, 王冠, 徐江. 水稻BR受体突变株Fn189拔节期生长发育及碳代谢分析[J]. 作物杂志, 2024, (6): 218–225
[12] 蒋凤林, 雷雄彪, 赵嘉暄, 黄敏, 李曼菲, 杜何为. 植物根毛生长发育过程及分子调控机制[J]. 作物杂志, 2024, (6): 9–17
[13] 董扬. 低温胁迫对不同耐冷性糜子品种苗期耐冷性的影响[J]. 作物杂志, 2024, (6): 91–96
[14] 雷云, 熊露露, 王健健. CO2浓度升高对不同薏苡品种生长及生理特性的影响[J]. 作物杂志, 2024, (5): 181–187
[15] 张旭丽, 王瑞军, 郗小倩, 冯学金, 李洪. 干旱胁迫及复水对黄芪幼苗生长、生理特性及次生代谢产物积累的影响[J]. 作物杂志, 2024, (5): 204–211
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!