作物杂志,2026, 第1期: 182–188 doi: 10.16035/j.issn.1001-7283.2026.01.023

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

抗旱性藜麦幼苗对干旱胁迫的生理响应

高艳梅1(), 冯鹏睿1(), 陈薇薇1, 张萌1, 张永清1,2()   

  1. 1山西师范大学生命科学学院,030031,山西太原
    2山西师范大学地理科学学院,030031,山西太原
  • 收稿日期:2024-07-22 修回日期:2024-09-24 出版日期:2026-02-15 发布日期:2026-02-10
  • 通讯作者: 张永清,主要从事植物生理生态、植物营养和土壤学研究,E-mail:yqzhang208@126.com
  • 作者简介:高艳梅,主要从事藜麦逆境生理调控工作,E-mail:gaoyanmei0225@163.com;|冯鹏睿为共同第一作者,主要从事植物生理、环境生态工程研究,E-mail:15822095815@163.com
  • 基金资助:
    山西省基础研究计划(202303021212154);山西省回国留学人员科研资助项目(2023-111);山西省高等学校科技创新项目(2022L259)

Physiological Response of Quinoa Seedlings with Drought Resistance to Drought Stress

Gao Yanmei1(), Feng Pengrui1(), Chen Weiwei1, Zhang Meng1, Zhang Yongqing1,2()   

  1. 1College of Life Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China
    2College of Geography Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China
  • Received:2024-07-22 Revised:2024-09-24 Online:2026-02-15 Published:2026-02-10

摘要:

为研究抗旱性藜麦幼苗对干旱胁迫的响应,选取强抗旱型藜麦品种陇藜1号(LL1)和新育品系LQ18作为试验材料,利用聚乙二醇6000(PEG-6000)溶液模拟干旱环境,设置正常灌水(CK)、轻度干旱胁迫(5% PEG-6000)和重度干旱胁迫(20% PEG-6000)3个处理,考察了藜麦种子的发芽率、发芽势和发芽指数,幼苗株高、叶面积和根长,地上及地下部干重,可溶性蛋白和脯氨酸含量,超氧化物歧化酶(SOD)和过氧化物酶(POD)活性及丙二醛(MDA)含量。结果表明,重度干旱胁迫降低了2个品种(系)的株高、叶面积和地上部干重,但提高了根长、地下部干重和根冠比。其中,LQ18的叶面积和地上部干重降幅,以及根长、地下部干重和根冠比增幅均小于LL1。干旱胁迫下LL1的可溶性蛋白含量逐渐降低,但LQ18的可溶性蛋白含量先升高后降低直至与CK无显著差异。重度干旱胁迫下2个品种(系)的脯氨酸含量均显著升高,且LQ18的脯氨酸含量显著高于LL1。干旱胁迫影响了2个品种(系)的SOD、POD活性并提高了MDA含量,重度干旱胁迫下LQ18的SOD活性略有下降,但其POD活性显著提高,且MDA含量显著低于LL1。

关键词: 藜麦, 干旱胁迫, 种子萌发, 幼苗生长, 生理特性

Abstract:

To investigate the response of drought-resistant quinoa seedlings to drought stress, the strongly drought-resistant quinoa variety Longli No.1 (LL1) and the new breeding line LQ18 were selected as experimental materials. PEG-6000 solution was used to simulate drought environment. Three treatments were set: normal irrigation (CK), mild drought stress (5% PEG-6000), and severe drought stress (20% PEG-6000). We investigated quinoa seed germination rate, germination potential, germination index; seedling plant height, leaf area, root length, aboveground and underground dry weights; soluble protein and proline contents; superoxide dismutase (SOD) and peroxidase (POD) activities; and malondialdehyde (MDA) content. The results showed that severe drought stress reduced plant height, leaf area, and aboveground dry weight in both varieties (lines), but increased root length, underground dry weight, and root-shoot ratio. Specifically, the reductions in leaf area and aboveground dry weight, as well as the increases in root length, underground dry weight, and root-shoot ratio were all smaller in LQ18 than in LL1. Under drought stress, the soluble protein content of LL1 gradually decreased, while that of LQ18 first increased and then decreased to a level with no significant difference from CK. Under severe drought stress, the proline content of both varieties (lines) significantly increased, and the proline content of LQ18 was significantly higher than that of LL1. Drought stress influenced the activities of SOD and POD and increased MDA content in both varieties (lines). Under severe stress, the SOD activity of LQ18 decreased slightly, whereas its POD activity increased significantly; furthermore, its MDA content remained significantly lower than that of LL1.

Key words: Quinoa, Drought stress, Seed germination, Seedling growth, Physiological characteristics

图1

干旱胁迫对2个品种(系)藜麦发芽率、发芽势和发芽指数的影响 不同小写字母表示在P < 0.05水平差异显著,下同。

表1

干旱胁迫对2个品种(系)藜麦幼苗株高、叶面积和根长的影响

品种(系)
Variety
(line)
处理
Treatment
株高
Plant height
(cm)
叶面积
Leaf area
(cm2)
根长
Root length
(cm)
LL1 CK 13.22±1.02a 22.92±6.04ab 18.64±0.79c
5% PEG-6000 13.40±0.69a 17.26±4.99cd 21.70±1.81b
20% PEG-6000 11.57±0.78b 14.92±3.43d 26.20±1.36a
LQ18 CK 9.41±0.84c 25.13±1.02a 16.49±0.40c
5% PEG-6000 9.27±0.98c 19.69±3.34bc 18.77±0.47c
20% PEG-6000 8.04±0.49d 17.75±2.86cd 22.31±1.86b

表2

干旱胁迫对2个品种(系)藜麦幼苗生物量的影响

品种(系)
Variety (line)
处理
Treatment
地上部干重
Aboveground dry weight (g)
地下部干重
Underground dry weight (g)
总干重
Total dry weight (g)
根冠比
Root-shoot ratio (%)
LL1 CK 0.23±0.02a 0.016±0.001bc 0.25±0.02a 7.11±0.01d
5% PEG-6000 0.16±0.01ab 0.022±0.004a 0.18±0.00bc 14.50±0.03b
20% PEG-6000 0.14±0.02c 0.026±0.003a 0.16±0.02bc 18.82±0.03a
LQ18 CK 0.16±0.00b 0.016±0.002c 0.18±0.00b 9.72±0.02cd
5% PEG-6000 0.15±0.01ab 0.017±0.002bc 0.17±0.01bc 11.33±0.01bc
20% PEG-6000 0.14±0.01ab 0.021±0.003ab 0.16±0.01c 14.55±0.01b

图2

干旱胁迫对2个品种(系)藜麦幼苗SP和Pro含量的影响

图3

干旱胁迫对2个品种(系)藜麦幼苗SOD、POD活性及MDA含量的影响

[1] 田计均, 唐媛, 董雨, 等. 水分胁迫对不同发育时期藜麦生理的影响. 生物学杂志, 2020, 37(6):73-76.
[2] 郭浩彬, 李敏杰, 张陆燕, 等. 美拉德反应优化藜麦多肽抗氧化活性的研究. 中国调味品, 2023, 48(12):59-68.
[3] Alvar-Beltrán J, Verdi L, Marta A D, et al. The effect of heat stress on quinoa (cv. Titicaca) under controlled climatic conditions. The Journal of Agricultural Science, 2020, 158(4):255-261.
doi: 10.1017/S0021859620000556
[4] 王洋. 藜麦抗旱种质资源鉴选及抗旱生理和分子机制研究. 呼和浩特:内蒙古农业大学, 2022.
[5] 刘文瑜, 何斌, 杨发荣, 等. 不同品种藜麦幼苗对干旱胁迫和复水的生理响应. 草业科学, 2019, 36(10):2656-2666.
[6] 吴龙龙, 田仓, 张露, 等. 稻田水氮氧环境因子对水稻生长发育、光合作用和氮利用的调控研究进展. 应用生态学报, 2021, 32(4):1498-1508.
doi: 10.13287/j.1001-9332.202104.020
[7] 姚庆, 秦培友, 苗昊翠, 等. PEG模拟干旱胁迫下藜麦萌发期抗旱性评价. 新疆农业科学, 2019, 56(9):1588-1596.
doi: 10.6048/j.issn.1001-4330.2019.09.003
[8] 王启学, 王兴, 余轩, 等. 荒漠区湿地植物群落分类排序及其与土壤环境因子的关系. 草业科学, 2023, 40(1):37-45.
[9] Sun Y, Liu F L, Bendevis M, et al. Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress. Journal of Agronomy and Crop Science, 2014, 200(1):12-23.
doi: 10.1111/jac.2013.200.issue-1
[10] García-Caparrós P, De Filippis L, Gul A, et al. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. The Botanical Review, 2020, 87(4):1-46.
doi: 10.1007/s12229-020-09244-w
[11] Hinojosa L, Sanad M N M E, Jarvis D E, et al. Impact of heat and drought stress on peroxisome proliferation in quinoa. The Plant Journal, 2019, 99(6):1144-1158.
doi: 10.1111/tpj.14411 pmid: 31108001
[12] Zhu X L, Liu W Y Q, Wang B, et al. Molecular and physiological responses of two quinoa genotypes to drought stress. Frontiers in Genetics, 2024,15,1439046.
[13] 陈雅琦, 苏楷淇, 陈泰祥, 等. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响. 草业学报, 2021, 30(3):137-157.
doi: 10.11686/cyxb2020416
[14] 朱丽丽, 张业猛, 张发玉, 等. 不同类型藜麦萌发期抗旱性差异分析及萌发进程模型拟合. 种子, 2023, 42(5):9-17.
[15] Okami M, Kato Y, Kobayashi N, et al. Morphological traits associated with vegetative growth of rice (Oryza sativa L.) during the recovery phase after early-season drought. European Journal of Agronomy, 2015,64:58-66.
[16] Hammerschmidt R, Nuckles E M, Kuć J A. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology, 1982,20:73-76.
[17] Du Z, Bramlage W J. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. Journal of Agricultural and Food Chemistry, 2002, 40(9):1566-1570.
doi: 10.1021/jf00021a018
[18] Beyer W F, Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 1987, 161(2):559-566.
doi: 10.1016/0003-2697(87)90489-1 pmid: 3034103
[19] Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies. Plant and Soil, 1973,39:205-207.
[20] 王占军, 季波, 纪童, 等. 5种豆科牧草抗旱性研究与评价. 草业学报, 2023, 32(10):187-199.
doi: 10.11686/cyxb2021048
[21] 李佩婷, 赵振丽, 黄潮华, 等. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析. 作物学报, 2022, 48(7):1583-1611.
doi: 10.3724/SP.J.1006.2022.14121
[22] 王晓雨, 王小平, 史文宇, 等. 拔节期冬小麦光合特性、干物质积累和产量对干旱胁迫的响应. 新疆农业科学, 2023, 60 (9):2163-2172.
doi: 10.6048/j.issn.1001-4330.2023.09.010
[23] 张俊杰, 陈金平, 汤钰镂, 等. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响. 作物学报, 2023, 49(5):1397-1409.
doi: 10.3724/SP.J.1006.2023.23003
[24] 单皓, 罗海婧, 张松, 等. 不同抗旱性小豆根系对干旱―复水的生理生态响应. 干旱地区农业研究, 2023, 41(1):94-100,127.
[25] 刘文瑜, 杨发荣, 谢志军, 等. 不同品种藜麦幼苗对干旱胁迫的生理响应及耐旱性评价. 干旱地区农业研究, 2021, 39(6):10-18.
[26] 邓杨, 王瑶, 郭洋楠, 等. 干旱胁迫下柳枝稷在露天矿区土壤中的种子萌发和生长特性. 生态学报, 2022, 42(22):9175-9185.
[27] 袁野梅, 柳隽瑶, 高秀丽, 等. 温带草原7种针茅植物根系特征及其对环境因子变化的适应. 生态学报, 2022, 42(21):8784-8794.
[28] 魏志敏, 赵宇, 崔纪菡, 等. 干旱胁迫对不同品系藜麦苗期生长特性的影响. 农业技术与装备, 2024(5):177-179.
[29] 沈文远, 陈昕钰, 余徐润, 等. 根际温度胁迫对小麦根系形态及生理影响的研究进展. 作物杂志, 2022(6):23-32.
[30] Qi Y, Ma L L, Ghani M I, et al. Effects of drought stress induced by hypertonic polyethylene glycol (PEG-6000) on Passiflora edulis Sims. physiological properties. Plants, 2023, 12(12):1-14.
doi: 10.3390/plants12010001
[31] Chen R, Hu X T, Chen D Y, et al. Heat and drought priming induce tolerance to subsequent heat and drought stress by regulating leaf photosynthesis, root morphology, and antioxidant defense in maize seedlings. Environmental and Experimental Botany, 2022,202:1-16.
[32] 刘牧野, 郭丽珠, 岳跃森, 等. 干旱胁迫下不同性别野牛草生理及抗氧化酶基因表达差异. 草业学报, 2023, 32(10):93-103.
doi: 10.11686/cyxb2023019
[33] 李伟成, 盛海燕, 高贵宾, 等. 高温干旱对髯毛箬竹的叶和细根的生理生态影响. 环境科学研究, 2017, 30(12):1908-1918.
[34] Ozturk M, Turkyilmaz Unal B, García-Caparrós P, et al. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 2020, 172(2):1321-1335.
doi: 10.1111/ppl.v172.2
[35] 张平, 张慧, 刘俊娜, 等. 干旱及复水处理对抗旱性不同小麦品种/系苗期生理生化指标的影响. 西北农业学报, 2020, 29(12):1795-1802.
[36] Gujjar R S, Roytrakul S, Chuekong W, et al. A synthetic cytokinin influences the accumulation of leaf soluble sugars and sugar transporters, and enhances the drought adaptability in rice. 3 Biotech, 2021, 11(8):369-369.
[37] 秦岭, 陈二影, 张艳亭, 等. 干旱及复水对谷子脯氨酸积累和SiP5CR基因表达的影响. 分子植物育种, 2018, 16(22):7460-7465.
[1] 孙茹梦, 张男, 殷佳, 汝艳, 景文疆, 张耗. 水稻根系分泌物对干旱胁迫的响应研究进展[J]. 作物杂志, 2026, (1): 1–8
[2] 刘晴, 孙露宏, 高世伟, 刘宇强, 常汇琳, 马成, 王婧泽, 王翠玲, 聂守军. 水稻叶片的生理性状和形态特征受铬胁迫的影响研究[J]. 作物杂志, 2026, (1): 143–151
[3] 杨文高, 袁文珏, 李兆光, 和桂青, 和琼姬, 王蕊, 李燕, 叶磊, 侯志江. 播期对滇西北冬播藜麦农艺性状和产量的影响[J]. 作物杂志, 2026, (1): 257–265
[4] 张业猛, 卢柯欣, 毛文钰, 张晓燕, 李文静, 杨修. 藜麦LEA基因家族鉴定及盐胁迫下的表达分析[J]. 作物杂志, 2025, (6): 100–111
[5] 刘松涛, 蒋超, 史涵博, 闫立楠, 赵海超, 卢海博, 栗慧, 黄智鸿. 玉米ZmPOD基因克隆、生物信息学分析及功能验证[J]. 作物杂志, 2025, (6): 37–44
[6] 李瑛, 赵永伟, 陈英, 马伟明, 李文珍, 张海杰. 化学诱变对胡麻“定亚23号”种子萌发和M1代主要农艺性状的影响[J]. 作物杂志, 2025, (5): 155–164
[7] 杜含梅, 谭露, 李声春, 王清海, 徐洲, 吴丹丹, 王安虎. 苦荞萌芽期镉耐受性及对幼苗生理特性的影响[J]. 作物杂志, 2025, (5): 209–220
[8] 闫晶蓉, 庞春花, 张永清, 毋悦悦, 侯钰晨, 王嘉祺, 乔曼. 脱硫石膏与腐植酸配施对盐碱地土壤及藜麦生长的影响[J]. 作物杂志, 2025, (5): 47–53
[9] 张金东, 王成, 卢环, 曾玲玲, 张巩亮, 孙浩月, 刘悦, 杨贺麟, 侯晓敏. 盐碱胁迫下不同基因型绿豆对外源BR的响应[J]. 作物杂志, 2025, (5): 54–60
[10] 王兖薇, 武俊喜, 汪艳, 牟涛, 朗卓玛, 苗彦军. 盐碱胁迫对异株荨麻种子萌发的影响[J]. 作物杂志, 2025, (5): 67–73
[11] 孙宪印, 张继波, 吕广德, 亓晓蕾, 孙盈盈, 米勇, 牟秋焕, 尹逊栋, 王瑞霞, 钱兆国, 高明刚. 旱地与补灌条件下不同基因型小麦高产稳产性比较[J]. 作物杂志, 2025, (4): 104–110
[12] 张智涵, 姚杰, 张占田, 卞福花, 张紫然, 陈平, 陈海宁, 刘保友. 5-氨基乙酰丙酸对干旱胁迫下黄瓜苗期生长和土壤酶活性的影响[J]. 作物杂志, 2025, (4): 245–250
[13] 侯晓敏, 申惠波, 董守坤, 闫锋, 董扬, 赵富阳, 李清泉, 左月桃. 甲哌鎓缓解大豆幼苗叶片干旱胁迫的生理效应[J]. 作物杂志, 2025, (3): 133–140
[14] 黄明, 付鑫鑫, 张振旺, 张军, 李友军. 种子大小对旱地小麦种子萌发、幼苗特性和抗旱性的影响[J]. 作物杂志, 2025, (3): 255–262
[15] 李小雨, 黄杰, 杨钊, 柴继宽, 杨发荣, 魏玉明, 刘文瑜, 拜伟俊. 基于AHP法的观赏藜麦综合评价体系的建立与应用[J]. 作物杂志, 2025, (3): 70–77
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!