作物杂志,2020, 第1期: 22–28 doi: 10.16035/j.issn.1001-7283.2020.01.005

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

玉米葡萄糖转运蛋白基因ZmGLUT-1表达特征分析及互作预测

张新1,曹丽茹1,2,魏良明1,张前进1,周柯1,王振华1(),鲁晓民1()   

  1. 1河南省农业科学院粮食作物研究所,450002,河南郑州
    2河南农业大学粮食作物协同创新中心,450002,河南郑州
  • 收稿日期:2019-07-10 修回日期:2019-09-29 出版日期:2020-02-15 发布日期:2020-02-23
  • 通讯作者: 王振华,鲁晓民 E-mail:wzh201@126.com;luxiaomin2004@163.com
  • 作者简介:张新,主要从事玉米遗传育种研究,E-mail: zh5733764@126.com
  • 基金资助:
    国家玉米产业技术体系(CARS-02-08);优质青贮玉米种质的创新与改良利用(182102110413)

Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1

Zhang Xin1,Cao Liru1,2,Wei Liangming1,Zhang Qianjin1,Zhou Ke1,Wang Zhenhua1(),Lu Xiaomin1()   

  1. 1Grain Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2019-07-10 Revised:2019-09-29 Online:2020-02-15 Published:2020-02-23
  • Contact: Zhenhua Wang,Xiaomin Lu E-mail:wzh201@126.com;luxiaomin2004@163.com

摘要:

葡萄糖转运蛋白(GLUT1)通过维持细胞膜两侧的葡萄糖浓度来维护细胞的稳定,在植物抗逆境方面起重要作用。从郑36自选系中克隆了1个GLUT1基因,暂时命名为ZmGLUT-1,该基因含有1 263bp的开放阅读框,编码420个氨基酸;对启动子顺式元件分析,发现该基因含有响应逆境胁迫、激素信号传导、光刺激应答等多种结合位点;蛋白序列分析表明,该蛋白属于疏水性蛋白,含有12个跨膜结构域,主要以α螺旋结构存在,亚细胞定位于质膜上;qRT-PCR结果表明该基因属于组成型表达基因,且在叶尖和胚中高表达,同时发现该基因受脱落酸(ABA)和PEG胁迫下调表达,而复水后表达虽有上升但无法达到正常水平;互作蛋白分析发现,或许ZmGLUT-1与互作蛋白构成调控网络,通过催化和跨膜转运糖类、脂质、激素等物质,来参与细胞代谢物的合成与降解,维护细胞的稳定性,以此来维护植物的生长发育。以上研究表明ZmGLUT-1基因与干旱胁迫和ABA诱导相关。

关键词: 玉米, 葡萄糖转运蛋白, 干旱和脱落酸胁迫, 细胞稳定性

Abstract:

Glucose transporter (GLUT1) maintains cell stability by maintaining glucose concentration on both sides of the cell membrane, which plays an important role in plant stress tolerance. In this study, GLUT1 gene (1 263bp) was cloned from the ‘zheng 36’, which was temporarily named ZmGLUT-1 gene. The promoter cis element analysis revealed that the gene contains various binding sites in response to stress, hormone signaling, and photo-stimulation response. InSilico analysis indicates that the protein is a hydrophobic protein with 12 transmembrane domains, mainly in the alpha helix structure, and subcellular localization on the plasma membrane. The result of qRT-PCR indicated that the gene was a constitutively expressed gene and was highly expressed in leaf tips and embryos. It was also found that the gene was down-regulated by abscisic acid (ABA) and PEG treatment, the expression after rehydration increased but could not reach normal level. Mutual protein analysis revealed that perhaps ZmGLUT-1 protein and the interaction proteins constitute a regulatory network. The above studies indicate that ZmGLUT-1 gene is associated with drought stress. These results provide information for further exploration of GLUT1 function and mechanism in plants, and for screening drought-resistant high-quality breeding germplasms.

Key words: Maize, Glucose transporter, Drought and ABA stress, Cell stability

图1

ZmGLUT-1基因的cDNA电泳图 M为Trans5K DNA标记,泳道1为ZmGLUT-1基因PCR扩增产物"

图2

ZmGLUT-1蛋白与其他物种蛋白的进化树及保守基序 Pahal.D02166.2代表胡桃木;Pavir.lb01737.1代表柳枝稷;Seita.9G395700.2代表谷子;Sobic.001G362500.1代表高粱;LOC_Os03g24860.1代表水稻;Bradi1g61757.2代表二穗短柄草;AT2G48020.2代表拟南芥;Gorai.005G056400.1代表棉花;Glyma.13G213200.4代表大豆"

表1

ZmGLUT-1基因启动子顺式元件分析"

元件Element 来源植物Source plant 位点Site 序列Sequence 功能Function
ABRE Oryza sativa 1 525 GCCGCGTGGC cis-acting element involved in the abscisic acid responsiveness
AuxRR-core Nicotiana tabacum 1 011 GGTCCAT cis-acting regulatory element involved in auxin responsiveness
CAT-box Arabidopsis thaliana 1 640 GCCACT cis-acting regulatory element related to meristem expression
CGTCA-motif Hordeum vulgare 494 CGTCA cis-acting regulatory element involved in the MeJA-responsiveness
GATA-motif Arabidopsis thaliana 1 106 GATAGGA part of a light responsive element
GT1-motif Arabidopsis thaliana 24 GGTTAA light responsive element
I-box Zea mays 1 285 GGATAAGGTG part of a light responsive element
O2-site Zea mays 1 286 GATGATGTGG cis-acting regulatory element involved in zein metabolism regulation
Sp1 Oryza sativa 1 459 GGGCGG light responsive element
TGA-element Brassica oleracea 428 AACGAC auxin-responsive element
TGACG-motif Hordeum vulgare 494 TGACG cis-acting regulatory element involved in the MeJA-responsiveness

图3

ZmGLUT-1基因在玉米不同组织的表达模式"

图4

ZmGLUT-1基因响应干旱胁迫和ABA诱导的表达模式"

图5

ZmGLUT-1蛋白在烟草中的亚细胞定位"

表2

ZmGLUT-1功能互作蛋白预测"

基因号
Gene ID
基因描述
Gene description
功能结构域
Function domain
氨基酸
Amino acid
互作系数
Interaction coefficient
GRMZM2G138423 ADP, ATP carrier protein ADP, ATP transporter on adenylate translocase 328 0.82
GRMZM2G100976 PhotosystemI1 NifU-like domain 266 0.80
GRMZM5G825759 TP synthase B chain ATP synthase B/B′ CF(0) 216 0.80
GRMZM2G073244 UDP-glycosyltransferase 84A1 Glycosyltransferase_GTB_type 481 0.80
GRMZM2G124321 UvrB/uvrC motif-containing protein UvrB/uvrC motif 334 0.72
[1] Marger M D, Saier M H Jr . A major superfamily of transmembrane facilitators that catalyse uniport,symport and antiport. Trends in Biochemical Sciences, 1993,18(1):13-20.
[2] Saier M H Jr, Reddy V S, Tamang D G , et al. The transporter classification database. Nucleic Acids Research, 2014,42:D251-D258.
[3] Reddy V S, Shlykov M A, Castillo R , et al. The major facilitator superfamily (MFS) revisited. The FEBS Journal, 2012,279(11):2022-2035.
[4] Williams L E, Lemoine R, Sauer N . Sugar transporters in higher plants-a diversity of roles and complex regulation. Trends in Plant Science, 2000,5(7):283-290.
[5] Cao E, Liao M, Cheng Y , et al. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature, 2013,504(7478):113-118.
[6] Schubert M, Melnikova A N, Mesecke N , et al. Two novel disaccharides,rutinose and methylrutinose,are involved in carbon metabolism in Datisca glomerata. Planta, 2010,231(3):507-521.
[7] Reinders A, Sivitz A B, Ward J M . Evolution of plant sucrose uptake transporters. Frontiers in Plant Science. 2012,3:22.
[8] Sauer N, Stolz J . SUC1 and SUC2:two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker′s yeast and identification of the histidine-tagged protein. The Plant Journal, 1994,6(1):67-77.
[9] Schulz A, Beyhl D, Marten I , et al. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. The Plant Journal, 2011,68(1):129-136.
[10] 马小龙, 刘颖慧, 袁祖丽 , 等. 玉米蔗糖转运蛋白基因ZmERD6 cDNAs的克隆与逆境条件下的表达. 作物学报, 2009,35(8):1410-1417.
[11] Mueckler M, Caruso C, Baldwin S , et al. Sequence and structure of a human glucose transporter. Science, 1985,229(4717):941-945.
[12] Rae A, Perroux, J M, Grof C P L . Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem:a potential role for the ShSUT1 sucrose transporter. Planta, 2005,220(6):817-825.
[13] Chen L Q, Qu X Q, Hou B H , et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012,335(6065):207-218.
[14] Klepek Y S, Geiger D, Stadler R , et al. Arabidopsis polyol transporter 5,a new member of the monosaccharide transporter-like superfamily,mediates H +-symport of numerous substrates,including myo-inositol,glycerol,and ribose . The Plant Cell, 2005,17:204-218.
[15] Edna A, Tahar T, Mikaël C , et al. Cloning,localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus (pineapple). Journal of Experimental Botany, 2008,59(7):1895-1908.
[16] Liu Q, Dang H J, Chen Z J , et al. Genome-wide identification,expression,and functional analysis of the sugar transporter gene family in cassava (Manihot esculenta). International Journal of Molecular Sciences, 2018,19(4):987-1004.
[17] Michael B, Norbert S . Monosaccharide transporters in plants:structure,function and physiology. Biochimica Biophysica Acta (BBA)-Biomembranes, 2000,1465:263-274.
[18] Endler A, Meyer S, Schelbert S , et al. Identification of a vacuolar sucrose transporter in barley and arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiology, 2006,141(1):196-207.
[19] Cao H, Guo S, Xu Y , et al. Reduced expression of a gene encoding a Golgi localized monosaccharide transporter (OsGMST1) confers hypersensitivity to salt in rice (Oryza sativa). Journal of Experimental Botany, 2011,62(13):4595-4604.
[20] Kühn C, Hajirezaei, Fernie A R ,et al. The sucrose transporter StSUT1 localizes to the sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiology, 2003,131(1):102-113.
[21] Vamada K, Osakabe Y, Mizoi J , et al. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. Journal of Biological Chemistry, 2010,285(2):1138-1146.
[22] Mamun E A, Alfred S, Cantrill L C , et al. Effects of chillin gonmale gametophyte development in rice. Cell Biology International, 2006,30(7):583-591.
[23] Wang Y, Xu H, Wei X . Molecular cloning and expression analysis of a monosaccharide transporter gene OsMST4 from rice (Oryza sativa L.). Plant Molecular Biology, 2007,65(4):439-451.
[24] Radzvilavicius A L, Blackstone N W . Conflict and cooperation in eukaryogenesis:implications for the timing of endosymbiosis and the evolution of sex. Journal of the Royal Society Interface, 2015,12(111):20150584.
[25] Hiroyuki K, Kenji O, Munehiko A , et al. The NMR structure of the domain II of a chloroplastic NifU-like protein OsNifU1A. Journal of Biomolecular NMR, 2007,38:161-164.
[1] 严华,晏中文,雷杰. 新源县1981-2018年气候变化特征及其对春玉米的影响[J]. 作物杂志, 2020, (2): 140–146
[2] 李瑞杰,唐会会,王庆燕,许艳丽,房孟颖,闫鹏,董志强,张凤路. 5-氨基乙酰丙酸和乙烯利复配剂对东北春玉米光合特性及产量的影响[J]. 作物杂志, 2020, (2): 125–133
[3] 陈迪文,周文灵,敖俊华,黄莹,江永,韩西红,秦益民,沈宏. 海藻提取物对甜玉米产量、品质及氮素利用的影响[J]. 作物杂志, 2020, (2): 134–139
[4] 周伟,崔福柱,段宏凯,郝国花,杨慧,刘芮芮. 播期对糯玉米籽粒产量及品质的影响[J]. 作物杂志, 2020, (2): 156–161
[5] 卫晓轶,王稼苜,马毅,马俊峰,洪德峰,魏锋. 玉米机械化籽粒收获组合鉴定与主成分分析[J]. 作物杂志, 2020, (2): 48–53
[6] 孙瑞东,臧振原,慈佳宾,杨巍,任雪娇,姜良宇,杨伟光. 玉米自交系对大斑病菌的抗性鉴定及抗性来源分析[J]. 作物杂志, 2020, (2): 65–70
[7] 许瀚林,刘瑶,袁晓峰,潘婕,瓮巧云,吕爱枝,刘颖慧. 气候变化对冀西北青贮玉米种植布局影响的预测[J]. 作物杂志, 2020, (1): 124–129
[8] 司雷勇,夏镇卿,金岩,陈广周,王广福,路海东,薛吉全. 覆盖方式对旱地春玉米根冠生长及水分利用效率的影响[J]. 作物杂志, 2020, (1): 146–153
[9] 白岚方,张向前,王瑞,王雅楠,叶雪松,王玉芬,李娟,张德健. 不同玉米品种光合特性及青贮产量品质的差异性研究[J]. 作物杂志, 2020, (1): 154–160
[10] 谭友斌. 援西非农业项目玉米育种的策略建议与探讨[J]. 作物杂志, 2020, (1): 9–12
[11] 陈宗培,薛佳欣,李奔,王贵彦. 玉米光合特性和冠层微环境对密度和行株距配置的响应[J]. 作物杂志, 2020, (1): 179–186
[12] 李忠南,张晓慧,王越人,张艳辉,邬生辉,许正学,李光发. 玉米DH系第一代种子休眠性的遗传[J]. 作物杂志, 2020, (1): 194–198
[13] 刁生鹏,高日平,高宇,任永峰,赵沛义,袁伟,高学峰. 内蒙古黄土高原秸秆还田对玉米农田土壤水热状况及产量的影响[J]. 作物杂志, 2019, (6): 83–89
[14] 庄克章,吴荣华,张春艳,徐立华,徐相波,丁一,王振南. 种植密度对不同类型玉米青贮产量和营养价值的影响[J]. 作物杂志, 2019, (6): 140–144
[15] 陈丽,张璐鑫,吴枫,李真,龙兴洲,杨玉锐,尹宝重. 河北平原麦玉两熟轮耕模式对土壤特性及作物产量的影响[J]. 作物杂志, 2019, (5): 143–150
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[3] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[4] 温辉芹,程天灵,裴自友,李雪,张立生,朱玫. 山西省近年审定小麦品种的综合性状分析[J]. 作物杂志, 2018, (4): 32 –36 .
[5] 梁海燕, 李海, 林凤仙, 张翔宇, 张知, 宋晓强. 不同糜子品种抗倒伏性田间鉴定及抗倒评价指标的筛选分析[J]. 作物杂志, 2018, (4): 37 –41 .
[6] 熊伟姣,王亚伦,姚绍嫦,潘春柳,肖冬,王爱勤,何龙飞. MicroRNA在高等植物逆境响应中的作用机制研究进展[J]. 作物杂志, 2018, (1): 1 –8 .
[7] 郜战宁,冯辉,薛正刚,杨永乾,王树杰,潘正茂. 28个大麦品种(系)主要农艺性状分析[J]. 作物杂志, 2018, (1): 77 –82 .
[8] 焦悦,付伟,翟勇. RNAi技术在作物中的应用及安全评价研究[J]. 作物杂志, 2018, (1): 9 –15 .
[9] 秋实. 中国作物学会甜菜协会在呼兰成立[J]. 作物杂志, 1990, (1): 14 .
[10] 马兴林, 陈庆沐, 许建新, 等. 棉花冬闲田种植牧草的增产效应[J]. 作物杂志, 1995, (3): 26 –27 .