作物杂志,2023, 第4期: 253–259 doi: 10.16035/j.issn.1001-7283.2023.04.036

• 种子科技 • 上一篇    下一篇

盐、碱胁迫下水稻种子萌发过程水分含量变化及对种子发芽影响的低场核磁检测研究

杨洪伟1,2(), 张丽颖3, 李晓辉1,2()   

  1. 1沈阳农业大学信息与电气工程学院,110866,辽宁沈阳
    2辽宁省农业信息化工程技术研究中心,110866,辽宁沈阳
    3辽宁省水稻研究所,110161,辽宁沈阳
  • 收稿日期:2022-03-06 修回日期:2022-05-26 出版日期:2023-08-15 发布日期:2023-08-15
  • 通讯作者: 李晓辉,研究方向为农业信息化与精准农业,E-mail:lxhjiayi@163.com
  • 作者简介:杨洪伟,研究方向为农业信息化与精准农业,E-mail:yhw2018@syau.edu.cn
  • 基金资助:
    财政部和农业农村部:现代农业产业技术体系建设专项(CARS-01-50)

Research on the Moisture Content Variation and Influence to Rice Seed Germination under Salt and Alkali Stress by Low Field NMR

Yang Hongwei1,2(), Zhang Liying3, Li Xiaohui1,2()   

  1. 1College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
    2Liaoning Engineering Research Center for Information Technology in Agriculture, Shenyang 110866, Liaoning, China
    3Liaoning Rice Research Institute, Shenyang 110161, Liaoning, China
  • Received:2022-03-06 Revised:2022-05-26 Online:2023-08-15 Published:2023-08-15

摘要:

为研究盐、碱胁迫下水稻种子萌发过程水分含量变化及对种子发芽的影响,以及利用低场核磁检测技术测定种子含水量的可行性,利用光照培养箱进行培养皿种子发芽试验,分析了在蒸馏水(对照处理)、浓度为50、150mmol/L NaCl和NaHCO3胁迫处理下,盐粳48和辽星1种子萌发72h过程中核磁信号幅值变化及各处理对发芽指标的影响,确定单位质量水稻种子样品核磁信号幅值与湿基含水率的回归函数关系。结果表明,与对照处理相比,萌发6、24、48、72h后,2个品种水稻种子核磁信号幅值平均分别增长了65%、95%、115%和135%以上。萌发相同时间后,相比对照处理,NaCl和NaHCO3胁迫处理下核磁信号幅值平均降低了5%以上,发芽指数平均降低了4.5%以上,说明水稻种子萌发过程水分含量与种子发芽指数呈正相关。不同浓度NaCl和NaHCO3胁迫下,单位质量水稻种子核磁信号幅值和湿基含水率之间均具有一致的线性关系,R2均大于0.95。说明利用核磁共振技术测定盐、碱胁迫下水稻种子的水分含量是合理可靠的。

关键词: 核磁共振弛豫谱, 盐胁迫, 碱胁迫, 水稻种子, 湿基含水率

Abstract:

In order to study the change of moisture content and its effects on the rice seeds germination under salt and alkali stress, and the feasibility of using low field nuclear magnetic detection technology to determine seed moisture content, two varieties (Yanjing 48 and Liaoxing 1) of rice seeds were placed in culture dish with the solution of 50, 150mmol/L NaCl, NaHCO3 and distilled water (control) respectively, nuclear magnetic resonance signal amplitude variation and effects of different solutions on germination characteristics were analyzed, and the regression equation was deduced between NMR signal amplitude per unit mass rice seed samples and the wet base moisture content. The results showed that the nuclear magnetic signal amplitudes of the two varieties of rice seeds increased by 65%, 95%, 115% and 135% respectively after seeds germination 6, 22, 48, and 72h compared with control treatment. After germination for the same time, the amplitude of NMR signal decreased by more than 5% under NaCl and NaHCO3 stress, the germination index decreased by more than 4.5% compared with the control treatment, indicating that there was a positive correlation between moisture content and seed germination index. There was a consistent linear correlation between NMR signal amplitude per unit mass and the wet base moisture content under different NaCl and NaHCO3 stress, R2 were all greater than 0.95. The results showed that it was reasonable and reliable to measure the water content of rice seeds under salt and alkali stress by nuclear magnetic resonance technology.

Key words: Nuclear magnetic resonance relaxation spectrum, Salt stress, Alkali stress, Rice seeds, Wet base moisture content

表1

NaCl和NaHCO3胁迫处理下水稻种子发芽指标对比

水稻品种
Rice variety
处理
Treatment
溶液浓度
Solution concentration
(mmol/L)
平均发芽时间
Mean germination
time (d)
发芽指数
Germination
index
发芽势
Germination
potential (%)
发芽率
Germination
percentage (%)
盐粳48 YJ48 对照 0 2.05±0.05cC 24.67±0.29aA 97.33±2.31aA 100.00±0.00aA
NaCl胁迫 50 2.82±0.03bB 18.41±0.11bB 97.33±2.31aA 100.00±0.00aA
150 3.05±0.05aAB 16.22±0.49cC 86.00±2.00bB 98.67±1.15aA
NaHCO3胁迫 50 2.99±0.08abAB 16.02±0.40cC 95.83±3.82aA 97.50±3.00abA
150 3.19±0.19aA 14.28±0.40dD 88.33±1.44bB 94.17±4.00bA
辽星1 LX1 对照 0 2.50±0.04cC 20.89±0.18aA 90.48±2.36aA 98.00±0.00aA
NaCl胁迫 50 3.05±0.04bB 16.37±0.37bB 92.56±1.26aA 98.00±2.00aA
150 4.41±0.10aA 10.03±0.28dD 88.26±1.37cC 93.33±4.16bB
NaHCO3胁迫 50 3.38±0.05bB 14.28±0.21cC 92.50.±2.50aA 96.67±1.00aA
150 4.53±0.07aA 9.82±0.17dD 38.33.±1.44bB 88.33±1.00cC

图1

NaCl胁迫处理下单位质量盐粳48种子T2反演谱

图2

NaHCO3胁迫处理下单位质量盐粳48种子T2反演谱

表2

NaCl和NaHCO3胁迫下单位质量盐粳48种子核磁共振信号幅值(A21 and A22)

溶液
Solution
萌发时间
Germination time (h)
对照CK 50mmol/L 150mmol/L
A21 A22 A21 A22 A21 A22
NaCl 初始 4497.0±58.6eE 408.6±8.3eE 4497.0±58.6eE 408.6±8.3eE 4497.0±58.6eE 408.6±8.3eE
6 7594.0±103.3dD 842.2±37.9dD 7331.2±95.4dD 829.5±31.9dD 7289.6±76.2dD 854.3±45.2dD
24 8874.6±102.3cC 1052.7±29.8cC 8868.8±73.3cC 1026.0±46.4cC 8809.8±90.6cC 1028.5±51.5cC
48 9248.3±132.1bB 1806.6±53.3bB 9319.0±73.9bB 1725.2±45.8bB 9510.3±73.5bB 1180.3±82.4bB
72 9059.4±104.5aA 3023.0±151.1aA 9458.0±122.0aA 2523.1±132.5aA 9055.4±128.2aA 1979.9±80.1aA
NaHCO3 初始 4497.0±58.6eE 408.6±8.3eE 4497.0±58.6eE 408.6±8.3eE 4497.0±58.6eE 408.6±8.3eE
6 7594.0±103.3dD 842.2±37.9dD 7394.4±85.6dD 846.2±42.1dD 7365.4±68.5dD 862.3±44.8dD
24 8874.6±102.3cC 1052.7±29.8cC 8885.4±71.6cC 1039.9±43.2cC 8829.7±85.3cC 1040.3±50.2cC
48 9248.3±132.1bB 1806.6±53.3bB 9307.1±72.8bB 1745.1±46.3bB 9103.2±65.3bB 1649.3±78.7bB
72 9059.4±104.5aA 3023.0±151.1aA 9487.8±118.6aA 2568.3±127.5aA 9369.9±116.7aA 2082.8±76.8aA

表3

NaCl和NaHCO3胁迫下单位质量辽星1种子核磁共振信号幅值A21 and A22

溶液
Solution
萌发时间
Germination time (h)
对照CK 50mmol/L 150mmol/L
A21 A22 A21 A22 A21 A22
NaCl 初始 4381.1±49.0eE 267.4±4.0eE 4381.1±49.0eE 267.4±4.0eE 4381.1±49.0eE 267.4±4.0eE
6 6890.9±86.5dD 708.3±32.8dD 6774.1±41.6dD 733.5±38.8dD 6733.5±107.6dD 743.2±22.4dD
24 8062.9±68.6cC 806.4±50.7cC 8011.5±130.8cC 827.7±32.0cC 8013.9±93.7cC 824.5±27.0cC
48 8970.2±80.2bB 1252.5±48.7bB 8668.3±103.9bB 1217.0±46.6bB 8756.7±138.2bB 983.0±25.6bB
72 8603.4±116.1aA 2050.5±94.8aA 8920.2±134.8aA 1682.4±88.2aA 8918.4±51.3aA 1265.3±56.1aA
NaHCO3 初始 4381.1±49.0eE 267.4±4.0eE 4381.1±49.0eE 267.4±4.0eE 4381.1±49.0eE 267.4±4.0eE
6 6890.9±86.5dD 708.3±32.8dD 6775.1±40.8dD 736.5±36.7dD 6747.5±98.6dD 746.2±20.8dD
24 8062.9±68.6cC 806.4±50.7cC 8024.2±105.2cC 829.7±37.6cC 8021.5±89.2cC 828.0±22.5cC
48 8970.2±80.2bB 1252.5±48.7bB 8717.7±98.2bB 1226.3±42.8bB 8790.4±125.6bB 1011.9±21.2bB
72 8603.4±116.1aA 2050.5±94.8aA 8923.7±102.7aA 1701.3±75.9aA 8947.9±48.2aA 1274.5±20.9aA

图3

NaCl和NaHCO3胁迫下单位质量盐粳48种子萌发6、24、48、72h后核磁信号幅值对比 不同大小写字母分别表示0.01和0.05水平差异显著

图4

NaCl胁迫下单位质量盐粳48种子核磁信号幅值与MC回归分析

图5

NaHCO3胁迫下单位质量盐粳48种子核磁信号幅值与MC回归分析

[1] 王海莲, 张华文, 刘宾, 等. 低度盐胁迫下高粱苗期相关性状的QTL定位. 分子植物育种, 2017, 15(2):604-610.
[2] Han L, Liu H, Yu S, et al. Potential application of oat for phytoremediation of salt ions in coastal saline-alkali soil. Ecological Engineering, 2013, 61:274-281.
doi: 10.1016/j.ecoleng.2013.09.034
[3] Alvarez-Acosta C, Marrero-Dominguez A, Gallo-Llobet L, et al. Physiological response of selected avocados (Persea americana) subjected to NaCl and NaHCO3 stress. Scientia Horticulturae, 2018, 237:81-88.
doi: 10.1016/j.scienta.2018.04.010
[4] Yan W, Gang Q J, Yin N H, et al. Effects of salt, alkali and salt- alkali mixed stresses on seed germination of the halophyte Salsola ferganica (Chenopodiaceae). Acta Ecologica Sinica, 2013, 33(6):354-360.
doi: 10.1016/j.chnaes.2013.09.010
[5] Fan X D, Wang J Q, Yang N, et al. Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing. Gene, 2013, 512(2):392-402.
doi: 10.1016/j.gene.2012.09.100
[6] Lin J, Yu D, Shi Y, et al. Salt-alkali tolerance during germination and establishment of Leymus chinensis in the Songnen Grassland of China. Ecological Engineering, 2016, 95:763-769.
doi: 10.1016/j.ecoleng.2016.07.011
[7] Wang F, Xiao H L, Peng X M, et al. Effects of salt and alkali stress on Reaumuria soongorica germination. Sciences in Cold and Arid Regions, 2017, 9(2):158-166.
[8] Guo R, Zhou J, Ren G X, et al. Physiological responses of linseed seedlings to iso osmotic polyethylene glycol, salt, and alkali stresses. Agronomy Journal, 2013, 105(3):764-772.
doi: 10.2134/agronj2012.0442
[9] 李双男, 郭慧娟, 王晶, 等. 不同盐碱胁迫对棉花种子萌发的影响. 种子, 2018, 37(1):38-45.
[10] 刘建新, 王金成, 王瑞娟, 等. 盐、碱胁迫对燕麦幼苗光合作用的影响. 干旱地区农业研究, 2015, 33(6):155-160.
[11] Gong B, Wen D, Bloszies S, et al. Comparative effects of NaCl and NaHCO3 stresses on respiratory metabolism, antioxidant system, nutritional status,and organic acid metabolism in tomato roots. Acta Physiologiae Plantarum, 2014, 36(8):2167-2181.
doi: 10.1007/s11738-014-1593-x
[12] Gong B, Dan W, Vandenlangenberg K, et al. Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Scientia Horticulturae, 2013, 157(3):1-12.
doi: 10.1016/j.scienta.2013.03.032
[13] 季平, 张鹏, 徐克章, 等. 不同类型盐碱胁迫对大豆植株生长性状和产量的影响. 大豆科学, 2013, 32(4):477-481.
[14] Lin J, Shao S, Wang Y, et al. Germination responses of the halophyte Chloris virgata to temperature and reduced water potential caused by salinity, alkalinity and drought stress. Grass and Forage Science, 2016, 71(3):507-514.
doi: 10.1111/gfs.2016.71.issue-3
[15] 张彦妮, 李博, 何淼. 盐胁迫对大花飞燕草种子萌发的影响. 草业科学, 2012, 29(8):1235-1239.
[16] Zhang H, Zhang G, Lü X, et al. Salt tolerance during seed germination and early seedling stages of 12 halophytes. Plant and Soil, 2015, 388(1/2):229-241.
doi: 10.1007/s11104-014-2322-3
[17] He L, Lin B, Hong Y, et al. Assessing the moisture migration during microwave drying of coal using low-field nuclear magnetic resonance. Drying Technology, 2017, 36(5):1-11.
doi: 10.1080/07373937.2017.1326130
[18] 要世瑾, 杜光源, 牟红梅, 等. 基于核磁共振技术检测小麦植株水分分布和变化规律. 农业工程学报, 2014, 30(24):177- 186.
[19] 牟红梅, 何建强, 邢建军, 等. 小麦灌浆过程籽粒水分变化的核磁共振检测. 农业工程学报, 2016, 32(8):98-104.
[20] Qiu Q Z, Wei L, Hao K L, et al. Low-field nuclear magnetic resonance for online determination of water content during sausage fermentation. Journal of Food Engineering, 2017, 212:291-297.
doi: 10.1016/j.jfoodeng.2017.05.021
[21] Sandnes R, Simon S, Sjöblom J, et al. Optimization and validation of low field nuclear magnetic resonance sequences to determine low water contents and water profiles in W/O emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441(3):441-448.
doi: 10.1016/j.colsurfa.2013.09.030
[1] 张瀚文, 刘丹, 王雪瑞, 李望舒, 卢强, 王树峰, 赵佳楠, 王玉波, 张贺, 李彩凤. 盐碱胁迫下不同时期叠加喷施BR 对甜菜产量和品质的作用效果[J]. 作物杂志, 2023, (4): 237–244
[2] 徐雪雯, 王兴鹏, 王洪博, 李国辉, 唐茂淞, 曹振玺. 水杨酸对盐胁迫下棉苗生长及生理的调控作用[J]. 作物杂志, 2023, (3): 188–194
[3] 栾金华, 宋欣阳, 汪磊, 孙丽丽, 程艳双, 董浩, 张佳, 程效义, 徐海. 辽宁省水稻新品系苗期耐盐性差异研究[J]. 作物杂志, 2023, (3): 20–26
[4] 梁萍, 张永清, 张萌, 薛小娇, 李平平, 张文燕, 王丹, 赵刚. PAM施用深度对盐碱胁迫下藜麦生长及生理指标的影响[J]. 作物杂志, 2023, (2): 178–185
[5] 顾逸彪, 颜佳倩, 薛张逸, 束晨晨, 张伟杨, 张耗, 刘立军, 王志琴, 周振玲, 徐大勇, 杨建昌, 顾骏飞. 耐盐性不同水稻品种根系对盐胁迫的响应差异及其机理研究[J]. 作物杂志, 2023, (2): 67–76
[6] 侯雪, 陈雨洁, 李春苗, 方淑梅, 梁喜龙, 郑殿峰. 调环酸钙对盐碱胁迫下绿豆苗期生长的调控作用[J]. 作物杂志, 2022, (6): 174–180
[7] 闻丹妮, 鲍聆然, 刘蒙蒙, 沈波. OsWD40过表达水稻根系响应盐胁迫的转录组分析[J]. 作物杂志, 2022, (6): 42–53
[8] 王金香, 王艳芝, 幸丽璇, 刘建霞, 王润梅. 赤霉素对盐胁迫下绿宝糯黍子幼苗根生长及渗透调节的影响[J]. 作物杂志, 2022, (6): 98–104
[9] 王瀚祥, 李广存, 徐建飞, 王万兴, 金黎平. 植物耐盐机理研究进展[J]. 作物杂志, 2022, (5): 1–12
[10] 王燕, 李廷友, 王豆, 李佳薇, 彭雯璐, 芮海云. 异甜菊醇对盐胁迫下小麦幼苗生长的影响[J]. 作物杂志, 2022, (5): 141–145
[11] 张建业, 杜庆志, 刘翔, 邓佳辉, 焦芹, 龚洛, 姜兴印. 盐碱胁迫下S-诱抗素对玉米萌发及生长的影响[J]. 作物杂志, 2022, (5): 167–173
[12] 施娴, 李洪有, 卢丙越, 周云, 赵继菊, 赵孟丽, 梁京, 孟衡玲. 3个苦荞品种对盐胁迫的生理响应及耐受性评价[J]. 作物杂志, 2022, (3): 149–154
[13] 吴鹏博, 李立军, 张艳丽. 油菜苗期耐盐碱性综合评价与根际土壤有机酸含量比较[J]. 作物杂志, 2022, (1): 110–115
[14] 蔡琪琪, 王堽, 董寅壮, 於丽华, 王宇光, 耿贵. 不同中性盐胁迫对甜菜幼苗光合作用和抗氧化酶系统的影响[J]. 作物杂志, 2022, (1): 130–136
[15] 翁文凤, 伍小方, 张凯旋, 唐宇, 江燕, 阮景军, 周美亮. 过表达FtbZIP5提高苦荞毛状根黄酮积累及其耐盐性[J]. 作物杂志, 2021, (4): 1–9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!