Crops ›› 2016, Vol. 32 ›› Issue (1): 76-81.doi: 10.16035/j.issn.1001-7283.2016.01.014

Previous Articles     Next Articles

Grain Dehydration Rate of Different Maize Varieties

Zhang Wenjie1,Wang Yonghong1,Wang Keru2,Zhao Jian1,Zhao Rulang1,Li Shaokun2   

  1. 1 Crop Research Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750105,Ningxia,China
    2 Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology,Ministry of Agriculture,Beijing 100081,China
  • Received:2015-09-15 Revised:2015-12-09 Online:2016-02-15 Published:2018-08-25
  • Contact: Yonghong Wang

Abstract:

In this study, we investigated grain moisture content and dehydration rate of grain, subtending leaf, cob from different maize cultivars of Zhengdan 958, Xianyu 335, Nonghua 101, Denghai 11, Zhongdan 909 and Zhengda 12. The results showed that grain moisture content, subtending leaf moisture content, cob moisture content were significant difference among different maize varieties, dehydration rate of grain was significant difference among different maize varieties. Grain moisture content was highly significantly positively related with that of subtending leaf and cob, with correlation coefficients of 0.777 and 0.267, respectively. Moisture content of subtending leaf was highly significantly positively related with that of cob, and the correlation coefficient was 0.312. Xianyu 335 and Nonghua 101 showed a faster dehydration and a longer rapid dehydration than that of other varieties in the prophase of grain dehydration. At harvest, rain moisture contents of the two varieties were 25.40% and 26.58%, respectively. Their characteristics conformed to the standard of mechanical harvesting grain, which cowld be used as standby varieties.

Key words: Maize, Grain, Grain moisture content, Dehydration rate, Mechanical harvesting grain

Table 1

The characteristics and yield of different varieties"

品种Variety 郑单958
Zhengdan 958
先玉335
Xianyu 335
农华101
Nonghua 101
登海11 Denghai 11 中单909 Zhongdan 909 正大12 Zhengda 12
株高Plant height(cm) 281.52 352.67 350.07 346.87 278.78 321.03
穗位Ear height (cm) 130.97 133.53 123.95 154.08 127.70 147.28
穗长Ear length(cm) 16.78 18.19 16.84 18.88 17.94 18.15
穗粗Ear diameter (mm) 5.28 5.02 5.22 5.15 5.04 5.47
秃尖Bare tip length (cm) 0.30 1.32 0.74 1.64 0.71 0.84
粒型Grain shape 半马齿 半硬质 半马齿 马齿 半马齿 硬粒
粒色Grain color 红黄
穗行数Ear rows 15.78 16.27 16.67 16.62 15.69 16.89
行粒数Kernels per row 33.64 34.89 32.64 34.73 34.82 34.71
粗淀粉Crude starch (%) 73.42 74.16 72.49 72.00 74.02 76.04
粗脂肪Crude fat(%) 3.92 4.08 3.10 5.09 3.46 4.34
粗蛋白Crude protein(%) 8.47 9.55 10.36 9.65 10.32 10.15
千粒重1000-grain weight(g) 415.51 423.11 400.94 344.92 402.52 402.03
出子率Kernel percentage(%) 88.86 88.10 86.29 86.72 88.84 80.40
生育期Growing stage(d) 138 136 136 136 138 141
产量Yield(kg/hm2 16 503.0 17 208.2 16 789.7 14 565.7 15 774.8 16 859.2

Table 2

Variance analysis and multiple comparisons of grain moisture and grain dehydration rate in different varieties"

子粒含水量
Grain moisture
子粒脱水速率
Grain dehydration rate(%/d)
品种
Varieties
子粒含水量
Grain moisture(%)
变异来源
Source
自由度
df
均方
MS
F值
F-value
变异来源
Source
自由度
df
均方
MS
F值
F-value
均值
Mean
0.01水平
0.01 level
取样时间 5 801.38 312.22** 阶段 4 0.97 7.72** 登海11 40.46 A
品种 5 60.51 23.58** 重复 2 0.05 0.41 正大12 39.76 AAB
取样时间×品种 25 18.07 7.04** 品种 5 0.43 3.37** 郑单958 38.76 AABB
重复 2 4.53 1.77 误差 78 0.13 中单909 38.38 AABBC
误差 70 2.57 总变异 89 农华101 37.17 BBCC
总变异 107 先玉335 35.37 CC

Table 3

Variance analysis for grain moisture and grain dehydration rate in different varieties"

性状
Trait
变异来源
Source
df 郑单958
Zhengdan 958
先玉335
Xianyu 335
农华101
Nonghua 101
登海11
Denghai 11
中单909
Zhongdan 909
正大12
Zhengda 12
均方
MS
F值
F-value
均方
MS
F值
F-value
均方
MS
F值
F-value
均方
MS
F值
F-value
均方
MS
F值
F-value
均方
MS
F值
F-value
子粒 取样时间 5 96.97 94.70** 192.00 134.45** 169.51 402.84** 299.86 324.55** 58.73 6.63** 74.65 52.95**
含水量 重复 2 1.49 1.46 1.03 0.72 1.48 3.52 0.26 0.28 17.24 1.95 2.52 1.79
误差 10 1.02 1.43 0.42 0.92 8.86 1.41
子粒脱 阶段 4 0.25 4.14* 0.10 1.67 0.33 9.75** 0.63 15.50** 0.12 0.74 0.15 1.88
水速率 重复 2 0 0.01 0.01 0.23 0 0.05 0.01 0.23 0.29 1.78 0.01 0.07
误差 8 0.06 0.06 0.03 0.04 0.16 0.08

"

品种
Variety
郑单958
Zhengdan 958
先玉335
Xianyu 335
农华101
Nonghua 101
登海11
Denghai 11
中单909
Zhongdan 909
正大12
Zhengda 12
阶段Stage
1 0.9533A 0.7367AA 0.6667BB 1.4567A 0.6750AA 0.7500A
2 0.4300BB 0.6000AA 0.3833BBCC 0.3300C 0.4067AA 0.3633AABB
3 0.2033BB 0.4833AA 0.2233CC 0.7700BB 0.3200AA 0.4167AAB
4 0.2867BB 0.8300A 1.0933A 0.9400BB 0.8567A 0.3200AABB
5 0.4733B 0.3700AA 0.5233BBCC 0.3833CC 0.3650AA 0.0500BB
取样日期 Time
8-20 48.25A 46.52A 46.77A 55.84A 43.81A 47.97A
8-27 41.58B 41.36B 42.12B 45.63B 41.57AA 42.72B
9-03 38.58CC 37.17C 39.44C 43.31C 39.88AA 40.18C
9-10 37.16C 33.80D 37.89D 37.92D 38.73AAB 37.27DD
9-17 35.15D 27.99E 30.23E 31.35E 33.87BBC 35.36DD
9-24 31.83E 25.40F 26.58F 28.68F 32.42CC 35.02D

Fig.1

Dynamic development of grain dehydration rate in different varieties"

Table 5

Variance analysis and multiple comparisons of husk moisture and cob moisture in different varieties"

变异来源
Source
苞叶含水量
Husk moisture
穗轴含水量
Cob moisture
苞叶含水量
Husk moisture
穗轴含水量
Cob moisture
自由度
df
均方
MS
F值
F-value
均方
MS
F值
F-value
品种
Varieties
均值(%)
Mean
品种
Varieties
均值(%)
Mean
取样时间 5 2 118.25 46.48** 63.73 1.23 登海11 53.2A 先玉335 53.73A
品种 5 482.00 10.58** 577.54 11.11** 先玉335 54.26AB 农华101 61.66B
重复 2 28.85 0.63 34.54 0.66 农华101 58.23ABC 郑单958 64.8BC
误差 95 45.58 52.02 中单909 60.23BC 正大12 65.39BC
总变异 107 郑单958 61.91CD 登海11 65.49BC
正大12 67.21D 中单909 70.74C

Table 6

Correlation analysis of grain dehydration rate in different traits"

性状
Trait
穗轴含水量
Cob moisture
苞叶含水量
Husk moisture
苞叶脱水速率
Husk dehydration rate
穗轴脱水速率
Cob dehydration rate
子粒含水量
Grain moisture
子粒脱水速率
Grain dehydration rate
穗轴含水量 1 0.312** 0.153 0.490** 0.267** 0.023
苞叶含水量 0.312** 1 0.313** 0.180 0.777** 0.167
苞叶脱水速率 0.153 0.313** 1 0.331** 0.067 0.171
穗轴脱水速率 0.490** 0.180 0.331** 1 0.040 -0.061
子粒含水量 0.267** 0.777** 0.067 0.040 1 0.492**
子粒脱水速率 0.023 0.167 0.171 -0.061 0.492** 1
[1] 张世煌, 徐志刚 . 耕作制度改革及其对农业技术发展的影响.作物杂志, 2009(1):1-3.
[2] 董树亭 . 玉米生态生理与产量品质的形成.北京: 高等教育出版社, 2006.
[3] 向葵 . 玉米子粒脱水速率测定方法优化及遗传研究. 成都:四川农业大学, 2011.
[4] 刘艳秋, 李明顺, 李新海 , 等. 1970s~2000s玉米主栽品种灌浆与脱水速率研究. 玉米科学, 2015,23(1):85-91.
[5] 谢瑞芝, 雷晓鹏, 王克如 , 等. 黄淮海夏玉米子粒机械收获研究初报.作物杂志, 2014(2):76-79.
[6] 柳枫贺, 王克如, 李健 , 等. 影响玉米机械收粒质量因素的分析.作物杂志, 2013(4):116-119.
[7] 李淑芳, 张春宵, 路明 , 等. 玉米籽粒自然脱水速率研究进展.分子植物育种, 2014(12):825-829.
[8] 霍仕平 . 玉米灌浆期子粒脱水速率的研究进展. 玉米科学, 1993,4(1):39-44.
[9] 王永宏 . 宁夏玉米栽培.北京: 中国农业科学技术出版社, 2014.
[10] 刁西洲, 王红武, 胡小娇 , 等. 玉米穗部性状遗传和杂种优势分析.作物杂志, 2015(4):36-40.
[11] 秦营营, 董树亭, 魏珊珊 , 等. 去苞叶对夏玉米籽粒灌浆特性和产量的影响. 中国农业科学, 2015,48(11):2118-2126.
[12] 吕香玲, 兰进好, 张宝石 . 玉米果穗脱水速率的研究. 西北农林科技大学学报(自然科学版), 2006,34(2):49-52.
[13] 张春荣, 岳竞之, 张莉 , 等. 玉米子粒含水量与穗部性状的相关分析. 玉米科学, 2007,15(1):59-61.
[14] 金益, 王振华, 张永林 , 等. 玉米杂交种蜡熟后籽粒自然脱水速率差异分析. 东北农业大学学报, 1997,28(1):29-32.
[15] 郭佳丽, 吕志尧, 吕颖颖 , 等. 玉米粒部性状对子粒脱水速率的影响. 玉米科学, 2014,22(4):33-38.
[16] Dorsey-Redding C, Hurburgh C R, Johnson L A , et al. Relationships among maize quality factors. Cereal Chemistry, 1991,68(6):602-605.
[17] Troyer A, Ambrose W . Plant characteristics affecting field drying rate of ear corn. Crop Science, 1971,11(4):529-531.
doi: 10.2135/cropsci1971.0011183X001100040019x
[18] Karababa E . Physical properties of popcorn kernels. Journal of Food Engineering, 2006,72:100-107.
doi: 10.1016/j.jfoodeng.2004.11.028
[19] 张丽, 张吉旺, 樊昕 , 等. 玉米籽粒比重与灌浆特性的关系. 中国农业科学, 2015,48(12):2327-2334.
[20] 张立国, 张林, 官春云 , 等. 玉米生理成熟后籽粒脱水速率与品质性状的相关分析. 东北农业大学学报, 2007,38(5):582-585.
[21] Curtis P E, Leng E R, Hageman R . Development changes in oil and fatty acid content of maize strains varying in oil content. Crop Science, 1968,8(6):689-693.
doi: 10.2135/cropsci1968.0011183X000800060015x
[22] Misevic D, Alexander D E, Dumanovic J , et al. Grain moisture loss rate of high-oil and standard-oil maize hybrids, Agronomy Journal, 1988,80(5):841-845.
doi: 10.2134/agronj1988.00021962008000050032x
[23] 李凤海, 郭佳丽, 于涛 , 等. 不同熟期玉米杂交种及其亲本子粒脱水速率的比较研究. 玉米科学, 2012,20(6):17-20.
[24] 马智艳, 董永彬, 乔大河 , 等. 不同种质玉米杂交种苞叶性状特征分析. 河南农业科学, 2015,44(2):15-18.
[25] Brooking I R . Maize ear moisture during grain-filling and its relation to physiological maturity and grain-drying, Field Crops Research, 1990,23(1):55-68.
doi: 10.1016/0378-4290(90)90097-U
[26] 丁佳琦, 王红武, 刘志芳 , 等. 玉米单交种和自交系生理成熟后子粒脱水速率的研究.作物杂志, 2012(5):26-29.
[27] 宋朝玉, 朱丕生, 高峻岭 , 等. 玉米籽粒脱水评价指标与收获期判断标准的辨析. 山东农业科学, 2015,47(8):20-24.
[28] 张立国, 王振华, 张林 , 等. 玉米生理成熟后子粒脱水速率的配合力分析.作物杂志, 2007(3):52-55.
[29] 霍仕平, 晏庆九 . 玉米生理成熟后籽粒快速脱水的意义及其研究进展.四川农业大学学报, 1993(11):626-629.
[1] Chen Guangzhou, Wang Guangfu, Qu Jianzhou, Si Leiyong, . Study on Grain Dehydration Rate and#br# Correlation Analysis of Major Related#br# Characters in Different Maize Inbred Lines [J]. Crops, 2018, 34(5): 33-39.
[2] Su Guihua, Li Chunlei, Su Yichen. Evaluation of 22 Main Popularized Varieties#br# by Variety Regional Trails in Jilin Province [J]. Crops, 2018, 34(5): 63-70.
[3] Wu Ronghua, Zhuang Kezhang, Liu Peng, Zhang Chunyan. Response of Summer Maize Yield to#br# Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[4] Li Shaokun, Zhang Wanxu, Wang Keru, Han Dongsheng, . Study on Maize Mechanical Grain#br# Harvest in Northern Xinjiang [J]. Crops, 2018, 34(5): 127-131.
[5] Gao Wenjun, Yang Guoyi, Gao Xinzhong, Yu Zhu, . The Effects of Nitrogen, Phosphorus, or Potassium#br# Fertilizer on the Yield and Silage Quality of Maize [J]. Crops, 2018, 34(5): 144-149.
[6] Wang Xiaolin, Ji Xiaoling, Zhang Panpan, Zhang Xiong, Zhang Jing. Correlation Analysis between Aboveground Biomass#br# Allocation and Grain Yield in Different Varieties of#br# Foxtail Millet in the Dry Land of Loess Plateau [J]. Crops, 2018, 34(5): 150-155.
[7] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production [J]. Crops, 2018, 34(4): 1-7.
[8] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia [J]. Crops, 2018, 34(4): 149-153.
[9] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang [J]. Crops, 2018, 34(4): 62-68.
[10] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[11] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties [J]. Crops, 2018, 34(4): 79-83.
[12] Shaokun Li,Keru Wang,Yanbo Wang,Haiyan Zhao,Yuzhong Shen,Dandan Cai,Wanxin Xiao,Wenye Jiang,Zhaofu Huang,Lichao Zhai,Ruizhi Xie,Peng Hou,Bo Ming. The Quality of Mechanical Harvesting Maize Grain and Its Influencing Factors in Central Liaoning Province [J]. Crops, 2018, 34(3): 162-167.
[13] Lei Shi,Guohong Wang,Yanbo Wang,Dawei Wang,Haiyan Zhao. Preliminary Study on Grain Dehydration Rate of Maize Hybrids and Their Parents [J]. Crops, 2018, 34(3): 84-89.
[14] Keru Wang,Shaokun Li,Yanbo Wang,Haiyan Zhao,Yuzhong Shen,Dandan Cai,Wanxin Xiao,Wenye Jiang,Zhaofu Huang,Lichao Zhai,Lulu Li,Ruizhi Xie,Peng Hou,Bo Ming. Screening Maize Varieties Suitable for Mechanical Harvesting Grain in the Central Liaoning Province [J]. Crops, 2018, 34(3): 97-102.
[15] Jingjing Yang,Jianglu Chen,Ruizhi Xie,Xiaowei Zhang,Bianhong Ding,Xinming Wu,Shaokun Li,Dongfang Li. Effects of Seed Weight Difference on the Evenness of Related Germination Indexes in Maize [J]. Crops, 2018, 34(3): 180-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .