Crops ›› 2017, Vol. 33 ›› Issue (2): 14-22.doi: 10.16035/j.issn.1001-7283.2017.02.003
Previous Articles Next Articles
Duan Junzhi1,Li Ying2,Zhao Mingzhong1,Li Qingzhou1,Zhang Li1,Wei Xiaochun1,Ren Yinling1
[1] |
Nuruzzaman M, Manimekalai R, Sharoni A M , et al. Genome-wide analysis of NAC transcription factor family in rice. Gene, 2010,465(1/2):30-44.
doi: 10.1016/j.gene.2010.06.008 pmid: 20600702 |
[2] |
Shiriga K, Sharma R, Kumar K , et al. Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. Meta Gene, 2014,2:407-417.
doi: 10.1016/j.mgene.2014.05.001 |
[3] |
Shang H, Li W, Zou C , et al. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.:Chromosomal location,structure,phylogeny,and expression patterns. Journal of Integrative Plant Biology, 2013,55(7):663-676.
doi: 10.1111/jipb.12085 |
[4] |
Liu T K, Song X M, Duan W K , et al. Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage. Plant Molecular Biology Reporter, 2014,32(5):1041-1056
doi: 10.1007/s11105-014-0712-6 |
[5] |
Hao Y J, Wei W, Song Q X , et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant Journal, 2011,68(2):302-313.
doi: 10.1111/j.1365-313X.2011.04687.x |
[6] |
Kjaersgaard T, Jensen M K, Christiansen M W , et al. Senescence-associated barley NAC (NAM,ATAF1,2,CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. Journal of Biological Chemistry, 2011,286(41):35418-35429.
doi: 10.1074/jbc.M111.247221 |
[7] |
Yang S D, Seo P J, Yoon H K , et al. The Arabidopsis NAC transc ription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. The Plant Cell, 2011,23(6):2155-2168.
doi: 10.1105/tpc.111.084913 |
[8] |
Zhong R, Lee C, Ye Z H . Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Molecular Plant, 2010,3(6):1087-1103.
doi: 10.1093/mp/ssq062 pmid: 20935069 |
[9] |
Nakashima K, Takasaki H, Mizoi J , et al. NAC transcription factors in plant abiotic stress responses.Biochimica et Biophysica Acta- Gene Regulatory Mechanisma, 2012,1819(2):97-103.
doi: 10.1016/j.bbagrm.2011.10.005 pmid: 22037288 |
[10] |
Tran L S, Nishiyama R, Yamaguchi-Shinozaki K , et al. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops, 2010,1(1):32-39.
doi: 10.4161/gmcr |
[11] |
Xia N, Zhang G, Sun Y F , et al. TaNAC8,a novel NAC transcription factor gene in wheat,responds to stripe rust pathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology, 2010,74(5/6):394-402.
doi: 10.1016/j.pmpp.2010.06.005 |
[12] |
Xia N, Zhang G, Liu X Y , et al. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Molecular Biology Reports, 2010,37(8):3703-3712.
doi: 10.1007/s11033-010-0023-4 |
[13] |
Duval M, Hsieh T F, Kim S Y , et al. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily. Plant Molecular Biology, 2002,50(2):237-248.
doi: 10.1023/A:1016028530943 pmid: 12175016 |
[14] |
Ooka H, Satoh K , Doi K,et al.Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana.DNA Research,2003,10(6):239-247.
doi: 10.1093/dnares/10.6.239 pmid: 15029955 |
[15] | Olsen A N, Ernst H A, Leggio L L , et al. NAC transcription factors:structurally distinct,functionally diverse. Trends Plant Science, 2005,10(2):79-87. |
[16] |
Hu H, Dai M, Yao J , et al. Overexpressing a NAM,ATAF,and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(35):12987-12992.
doi: 10.1073/pnas.0604882103 |
[17] |
Redillas M C, Jeong J S, Kim Y S , et al. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnology Journal, 2012,10(7):792-805.
doi: 10.1111/j.1467-7652.2012.00697.x |
[18] |
Jeong J S, Kim Y S, Baek K H , et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology, 2010,153(1):185-197.
doi: 10.1104/pp.110.154773 |
[19] |
Jeong J S, Kim Y S, Redillas M C , et al. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnology Journal, 2013,11(1):101-114.
doi: 10.1111/pbi.12011 |
[20] |
Chen X, Wang Y, Lv B , et al. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant and Cell Physiology, 2014,55(3):604-619.
doi: 10.1093/pcp/pct204 |
[21] |
Fang Y, Liao K, Du H , et al. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. Journal of Experimental Botany, 2015,66(21):6803-6817
doi: 10.1093/jxb/erv386 |
[22] | Saad A S, Li X, Li H P, et al.A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses.Plant Science , 2013, 203- 204:33-40. |
[23] |
Liu G, Li X, Jin S , et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One, 2014,9(1):e86895.
doi: 10.1371/journal.pone.0086895 |
[24] |
An X, Liao Y, Zhang J , et al. Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance. Plant Growth Regulation, 2015,76(2):211-223.
doi: 10.1007/s10725-014-9991-z |
[25] |
Takasaki H, Maruyama K, Kidokoro S , et al. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molecular Genetics and Genomics, 2010,284(3):173-183.
doi: 10.1007/s00438-010-0557-0 |
[26] |
Tran L S P, Nakashima K, Sakuma Y , et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 2004,16(9):2481-2498.
doi: 10.1105/tpc.104.022699 |
[27] | Lu P L, Chen N Z, An R , et al. A novel drought-inducible gene,ATAF1,encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Molecular Biology, 2007,63(2):289-305. |
[28] |
Wu Y, Deng Z, Lai J , et al. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Research, 2009,19(11):1279-1290.
doi: 10.1038/cr.2009.108 pmid: 19752887 |
[29] |
Xu Z Y, Kim S Y , Hyeon do Y,et al.The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. The Plant Cell, 2013,25(11):4708-4724.
doi: 10.1105/tpc.113.119099 |
[30] |
Gao F, Xiong A, Peng R , et al. OsNAC52,a rice NAC transcription factor,potentially responds to ABA and confers drought tolerance in transgenic plants.Plant Cell, Tissue and Organ Culture, 2010,100(3):255-262.
doi: 10.1007/s11240-009-9640-9 |
[31] |
Lu M, Ying S, Zhang D F , et al. A maize stress-responsive NAC transcription factor,ZmSNAC1,confers enhanced tolerance to dehydrationin transgenic Arabidopsis. Plant Cell Reports, 2012,31(9):1701-1711.
doi: 10.1007/s00299-012-1284-2 |
[32] |
Mao H, Yu L, Han R , et al. ZmNAC55,a maize stress-responsive NAC transcription factor,confers drought resistance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2016,105:55-66.
doi: 10.1016/j.plaphy.2016.04.018 |
[33] |
Mao H, Wang H, Liu S , et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications, 2015,6:8326.
doi: 10.1038/ncomms9326 pmid: 4595727 |
[34] |
Xue G P, Way H M, Richardson T , et al. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molecular Plant, 2011,4(4):697-712.
doi: 10.1093/mp/ssr013 |
[35] | Pandurangaiah M, Lokanadha R G, Sudhakarbabu O , et al. Overexpression of horsegram (Macrotyloma uniflorum Lam.Verdc.) NAC transcriptional |
36 | factor (MuNAC4) in groundnut confers enhanced drought tolerance. Molecular Biotechnology, 2014,56(8):758-769. |
[36] | Tang Y M, Liu M Y, Gao S Q , et al. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiologia Plantarum, 2012,114(3):210-224. |
[37] |
Liu X, Liu S, Wu J , et al. Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiology and Biochemistry, 2013,70:354-359.
doi: 10.1016/j.plaphy.2013.05.018 |
[38] |
Lu M, Zhang D F, Shi Y S , et al. Expression of SbSNAC1,a NAC transcription factor from sorghum,confers drought tolerance to transgenic Arabidopsis.Plant Cell, Tissue and Organ Culture, 2013,115:443-455.
doi: 10.1007/s11240-013-0375-2 |
[39] |
Yu X, Peng H, Liu Y , et al. CarNAC2,a novel NAC transcription factor in chickpea (Cicer arietinum L.),is associated with drought-response and various developmental processes in transgenic Arabidopsis. Journal of Plant Biology, 2014,57(1):55-66.
doi: 10.1007/s12374-013-0457-z |
[40] |
Yu X, Liu Y, Wang S , et al. A chickpea stress-responsive NAC transcription factor,CarNAC5,confers enhanced tolerance to drought stress in transgenic Arabidopsis. Plant Growth Regulation, 2016,79(2):187-197.
doi: 10.1007/s10725-015-0124-0 |
[41] |
Dai F, Zhang C, Jiang X , et al. RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rosepetals. Plant Physiology, 2012,160(4):2064-2082.
doi: 10.1104/pp.112.207720 |
[42] |
Jiang X, Zhang C, Lü P , et al. RhNAC3,a stress-associated NAC transcription factor,has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals. Plant Biotechnology Journal, 2014,12(1):38-48.
doi: 10.1111/pbi.12114 |
[43] |
Yokotani N, Ichikawa T, Kondou Y , et al. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta, 2009,229(5):1065-1075.
doi: 10.1007/s00425-009-0895-5 |
[44] |
Sakuraba Y, Piao W, Lim J H , et al. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant and Cell Physiology, 2015,56(12):2325-2339.
doi: 10.1093/pcp/pcv144 pmid: 26443376 |
[45] |
Park J, Kim Y S, Kim S G , et al. Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiology, 2011,156(2):537-549.
doi: 10.1104/pp.111.177071 |
[46] |
Zhong H, Guo Q Q, Chen L , et al. Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Plant Cell Report, 2012,31(11):1991-2003.
doi: 10.1007/s00299-012-1311-3 |
[47] |
Liu Q L, Xu K D, Zhao L J , et al. Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnology Letters, 2011,33(10):2073-2082.
doi: 10.1007/s10529-011-0659-8 |
[48] |
Wang J Y, Wang J P, He Y . A Populus euphratica NAC protein regulating Na+/K+ homeostasis improves salt tolerance in Arabidopsis thaliana . Gene, 2013,521(2):265-273.
doi: 10.1016/j.gene.2013.03.068 |
[49] |
Han X, Feng Z, Xing D , et al. Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis. BMC Plant Biology, 2015,15:208.
doi: 10.1186/s12870-015-0591-5 |
[50] |
Yoo S Y, Kim Y, Kim S Y , et al. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS One, 2007,2(7):e642.
doi: 10.1371/journal.pone.0000642 pmid: 1920552 |
[51] |
Ma N N, Zuo Y Q, Liang X Q , et al. The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiologia Plantarum, 2013,149(4):474-486.
doi: 10.1111/ppl.2013.149.issue-4 |
[52] |
Qu Y, Duan M, Zhang Z , et al. Overexpression of the Medicago falcata NAC transcription factor MfNAC3 enhances cold tolerance in Medicago truncatula. Environmental and Experimental Botany, 2016,129:67-76.
doi: 10.1016/j.envexpbot.2015.12.012 |
[53] | Shahnejat-Bushehri S, Mueller-Roeber B, Balazadeh S . Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signaling & Behavior, 2012,7(12):1518-1521. |
[54] |
Guan Q, Yue X, Zeng H , et al. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress responsive gene regulation and thermo tolerance in Arabidopsis. The Plant Cell, 2014,26(1):438-453.
doi: 10.1105/tpc.113.118927 |
[55] |
Yabuta Y, Osada R, Morishita T , et al. Involvement of Arabidopsis NAC transcription factor in the regulation of 20S and 26S proteasomes. Plant Science, 2011,181(4):421-427.
doi: 10.1016/j.plantsci.2011.07.001 |
[56] |
Ochiai K, Shimizu A, Okumoto Y , et al. Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice. Plant Physiology, 2011,156(3):1457-1463.
doi: 10.1104/pp.110.171470 pmid: 21543724 |
[57] |
Nakashima K, Tran L S, Van Nguyen D , et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal, 2007,51(4):617-630.
doi: 10.1111/j.1365-313X.2007.03168.x |
[58] |
Zheng X, Chen B, Lu G , et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications, 2009,379(4):985-989.
doi: 10.1016/j.bbrc.2008.12.163 pmid: 19135985 |
[59] | Hong Y, Zhang H, Huang L , et al. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Frontiers in Plant Science, 2016,7:4. |
[60] |
Huang Q, Wang Y, Li B , et al. TaNAC29,a NAC transcription factor from wheat,enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biology, 2015,15:268.
doi: 10.1186/s12870-015-0644-9 |
[61] |
Zhu M, Chen G, Zhang J , et al. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Reports, 2014,33(11):1851-1863.
doi: 10.1007/s00299-014-1662-z |
[62] |
Wang G, Zhang S, Ma X , et al. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiologia Plantarum, 2016,158(1):45-64.
doi: 10.1111/ppl.2016.158.issue-1 |
[63] |
Liu X, Hong L, Li X Y , et al. Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Bioscience Biotechnology and Biochemistry, 2011,75(3):443-450.
doi: 10.1271/bbb.100614 |
[64] |
Ramegowda V, Senthil-Kumar M, Nataraja K N , et al. Expression of a finger millet transcription factor,EcNAC1,in tobacco confers abiotic stress-tolerance. PLoS One, 2012,7(7):e40397.
doi: 10.1371/journal.pone.0040397 |
[65] |
Movahedi A, Zhang J, Yin T , et al. Functional analysis of two orthologous NAC genes,CarNAC3,and CarNAC6 from Cicer arietinum,involved in abiotic stresses in poplar. Plant Molecular Biology Reporter, 2015,33:1539-1551.
doi: 10.1007/s11105-015-0855-0 |
[66] |
Yu X, Liu Y, Wang S , et al. CarNAC4,a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Reports, 2016,35(3):613-627.
doi: 10.1007/s00299-015-1907-5 |
[67] |
Yang X, Wang X, Ji L , et al. Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Reports, 2015,34(6):943-958.
doi: 10.1007/s00299-015-1756-2 |
[68] |
Zhao X, Yang X, Pei S , et al. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis. Gene, 2016,586(1):158-169.
doi: 10.1016/j.gene.2016.04.028 |
[69] |
Hu H, You J, Fang Y , et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology, 2008,67(1/2):169-181.
doi: 10.1007/s11103-010-9598-3 pmid: 18273684 |
[70] |
Mao X G, Zhang H Y, Qian X Y , et al. TaNAC2,a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany, 2012,63(8):2933-2946.
doi: 10.1093/jxb/err462 |
[71] |
Li X L, Yang X, Hu Y X , et al. A novel NAC transcription factor from Suaeda liaotungensis K.enhanced transgenic Arabidopsis drought,salt,and cold stress tolerance. Plant Cell Reports, 2014,33(5):767-778.
doi: 10.1007/s00299-014-1602-y |
[72] |
Jin H, Huang F, Cheng H , et al. Overexpression of the GmNAC2 gene,an NAC transcription factor,reduces abiotic stress tolerance in tobacco. Plant Molecular Biology Reporter, 2013,31(2):435-442.
doi: 10.1007/s11105-012-0514-7 |
[1] | Zhang Xiangyu, Li Hai, Liang Haiyan, . Effects of Different Row Spacing and Planting Density#br# on the Growth Characteristics and Yield of Millet [J]. Crops, 2018, 34(5): 91-96. |
[2] | Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province [J]. Crops, 2018, 34(4): 143-148. |
[3] | Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9" [J]. Crops, 2018, 34(4): 89-94. |
[4] | Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production [J]. Crops, 2018, 34(4): 1-7. |
[5] | Shaokun Li,Keru Wang,Yanbo Wang,Haiyan Zhao,Yuzhong Shen,Dandan Cai,Wanxin Xiao,Wenye Jiang,Zhaofu Huang,Lichao Zhai,Ruizhi Xie,Peng Hou,Bo Ming. The Quality of Mechanical Harvesting Maize Grain and Its Influencing Factors in Central Liaoning Province [J]. Crops, 2018, 34(3): 162-167. |
[6] | Chendan Liu,Zeyan Zhang,Yaowen Zhang. Identification of Drought Tolerance in Bud Stage of Different Genotypes of Mung Bean [J]. Crops, 2018, 34(3): 77-83. |
[7] | Yaning Wang,Jinpeng Yang,Chunlei Yang,Fangsen Xu,Xiang Zhang,Liang Li. Effects of Well-Cellar Transplanting with Triangulation on Growth, Development,Yield and Quality of Burley Tobacco [J]. Crops, 2018, 34(3): 116-122. |
[8] | Jianjun Wang,Yongjun Zeng,Yanhong Yi,Qiming Zhang,Qixing Hu,Xueming Tan,Shan Huang,Qingyin Shang,Yanhua Zeng,Qinghua Shi. The Uniformity of Mechanical-Transplanted Early-Season Rice under Different Seeding Rates and Its Effects on the Formation of Grain Yield [J]. Crops, 2018, 34(2): 141-147. |
[9] | Mingming Yan,Qiujun Chen,Min Tang,Zhiwen Liu. Effects of Different Concentration Combinations of Hormone and Organics on Rapid Propagation of Sweet Potato Virus-Free Seedling [J]. Crops, 2018, 34(2): 68-72. |
[10] | Junshuai Lu,Yunxiang Li,Xingfu Wang,Guohua Gao,Xia Yang,Jing Liang. Effects of High-Density on Agronomic Traits and Yield of Maize Varieties in Yellow River Irrigation Areas of Gansu Province [J]. Crops, 2018, 34(2): 97-102. |
[11] | Ruixin Zhang,Tianbao Ren,Zhe Zhao,Gang Wen,Mingqin Zhao. Effects of Transplanting Date on Quality and Main Economic Characters of Cigar in Five Fingers Group [J]. Crops, 2018, 34(2): 148-153. |
[12] | Ruiqi Ma,Zhen Qi,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yushuang Yang,Jinfeng Feng,Min Sun,Guangcai Zhao. Regulation Effects of Growth Regulators on Plant Characters, Yield and Quality of Winter Wheat [J]. Crops, 2018, 34(1): 133-140. |
[13] | Weijiao Xiong,Yalun Wang,Shaochang Yao,Chunliu Pan,Dong Xiao,Aiqin Wang,Longfei He. Progress in Studying Mechanism of microRNA in Stress Response in Higher Plants [J]. Crops, 2018, 34(1): 1-8. |
[14] | Shaokun Li,Keru Wang,Xiaoxia Yang,Dongsheng Han,Yuhua Wang,Ruizhi Xie,Peng Hou,Bo Ming. Technology and Benefit Analysis of High Yield Record Field in Maize [J]. Crops, 2017, 33(6): 1-6. |
[15] | Li Song,Wanyou Liao,Yejun Wang,Youjian Su,Yongli Zhang,Yi Luo,Jun Liao,Weiguo Wu. Research Progress in Intercropping Upland Crops with Green Manure [J]. Crops, 2017, 33(6): 7-11. |
|