Crops ›› 2017, Vol. 33 ›› Issue (6): 84-90.doi: 10.16035/j.issn.1001-7283.2017.06.015

Previous Articles     Next Articles

Effects of Black Soil and Alluvial Soil on Nutritional Quality of Different Spring Wheat

Zhu Yingjie,Chang Xuhong,Wang Demei,Yang Yushuang,Wang Yu,Lü Bing,Ma Ruiqi,Liu Ying,Wang Yujiao,Zhao Guangcai,Tao Zhiqiang   

  1. Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology,Ministry of Agriculture,Beijing 100081,China
  • Received:2017-08-11 Revised:2017-10-01 Online:2017-12-15 Published:2018-08-26
  • Contact: Guangcai Zhao,Zhiqiang Tao

Abstract:

In order to investigate the changes of grain nutritional quality in middle gluten and strong gluten spring wheat under black soil and alluvial soil, a potted experiment in greenhouse was conducted in Institute of Crop Sciences, Chinese Academy of Agricultural Sciences in 2016-2017 to study the effect of black soil and alluvial soil on spring wheat grain protein and amino acid yield in two middle gluten varieties Nongmai4 (NM4), Nongmai5 (NM5), and two strong gluten varieties Jinqiang7 (JQ7) and Jinqiang8 (JQ8). The results showed that 1000-grain protein yield, protein component yield, and amino acid yield of spring wheat increased significantly under black soil (P<0.01) compared with alluvial soil. JQ8 had higher protein yield, protein component yield and amino acid yield than JQ7. NM5 had higher protein yield, protein component yield and amino acid yield than NM4. The interaction effect of soil×variety on 1000-grain protein yield and its components yield, and amino acid yield were significant (P<0.05). Overall, black soil was better than alluvial soil for JQ8 and NM5 to produce more grain protein and amino acids, improving the nutritional quality of strong gluten and middle gluten spring wheat.

Key words: Spring wheat, Soil type, Nutrient quality, Protein, Amino acid

Table 1

Basic nutrient of black soil and alluvial soil"

土壤类型
Soil type
有机质(g/kg)
Organic matter
全氮(g/kg)
Total nitrogen
碱解氮(mg/kg)
Alkaline hydrolysis nitrogen
速效磷(P2O5,mg/kg)
Available phosphorus
速效钾(K2O,mg/kg)
Available potassium
黑土Black soil 58.7 3.3 276.9 38.1 228.0
潮土Alluvial soil 18.5 0.8 66.0 9.7 102.0

Table 2

Grain protein yield per 1000-grain under different soil types g"

土壤类型Soil type 总蛋白质Total protein 清蛋白Albumin 球蛋白Globulin 醇溶蛋白Prolamin 谷蛋白Glutelin
黑土Black soil 5.60±0.42aA 1.12±0.05aA 0.65±0.06aA 1.10±0.07aA 2.37±0.18aA
潮土Alluvial soil 4.43±0.61bB 0.97±0.10bB 0.54±0.03bB 0.99±0.06aA 1.84±0.11bB

Table 3

Grain protein yield per 1000-grain in different varieties g"

品种Variety 总蛋白质Total protein 清蛋白Albumin 球蛋白Globulin 醇溶蛋白Prolamin 谷蛋白Glutelin
NM4 4.40±0.31bB 1.07±0.06aAB 0.53±0.01bB 0.86±0.08bB 1.72±0.26bB
NM5 4.49±0.36bB 1.16±0.07aA 0.61±0.03abAB 1.02±0.10bB 1.61±0.31bB
JQ7 5.10±0.61bAB 0.89±0.07bB 0.57±0.02bAB 0.90±0.14bB 2.44±0.28aA
JQ8 6.05±0.42aA 1.07±0.05aAB 0.69±0.08aA 1.40±0.15aA 2.65±0.21aA

Table 4

Comparison of grain protein yield and its components yield per 1000-grain in different soil types and varieties g"

土壤类型Soil type 品种Variety 总蛋白质Total protein 清蛋白Albumin 球蛋白Globulin 醇溶蛋白Prolamin 谷蛋白Glutelin
黑土Black soil NM4 4.97±0.15bcABC 1.20±0.08abAB 0.61±0.04abcAB 0.93±0.07bcBC 1.94±0.29bcABC
NM5 5.52±0.47abAB 1.31±0.15aA 0.70±0.06aA 1.15±0.13abABC 2.11±0.23abcABC
JQ7 5.50±0.54abAB 0.89±0.06cC 0.61±0.06abcAB 0.97±0.06bcBC 2.61±0.15abA
JQ8 6.40±0.44aA 1.07±0.06bcABC 0.69±0.07aA 1.45±0.06aA 2.83±0.08aA
潮土Alluvial soil NM4 3.84±0.15cdBC 0.94±0.05cBC 0.44±0.05dB 0.79±0.05cC 1.49±0.16cdBC
NM5 3.46±0.18dC 1.00±0.13bcBC 0.52±0.06cdAB 0.88±0.08bcC 1.12±0.11dC
JQ7 4.71±0.18bcdABC 0.88±0.05cC 0.53±0.07bcdAB 0.83±0.10bcC 2.28±0.21abAB
JQ8 5.71±0.46abA 1.07±0.05bcABC 0.68±0.07abA 1.36±0.08aAB 2.48±0.18abAB
作用Effect
土壤类型
Soil type
** ** ** ns **
品种Variety ** ** ** ** **
土壤类型×品种Soil type×Variety ** ** ** ** **

Fig.1

Total amino acid yield per 1000-grain in different soil types(A) and different varieties(B) Different small letters indicate significant difference among treatments at 0.05 level. Different capital letters indicate significant difference among treatments at 0.01 level. The same below"

Fig.2

Essential amino acid yield and nonessential amino acid yield per 1000-grain in different soil types(A) and different varieties(B)"

Table 5

Comparison of grain amino acid yield per 1000-grain in spring wheat under different soil types g"

土壤类型Soil type 品种Variety 总氨基酸Total amino acid 必需氨基酸Essential amino acid 非必需氨基酸Nonessential amino acid
黑土Black soil NM4 4.54±0.72abAB 1.25±0.08abAB 3.30±0.33aAB
NM5 5.14±0.51abA 1.40±0.15abA 3.74±0.35aA
JQ7 5.04±0.53abA 1.29±0.07abAB 3.75±0.28aA
JQ8 5.63±0.44aA 1.51±0.18aA 4.12±0.31aA
潮土Alluvial soil NM4 3.16±0.31cB 0.86±0.15cB 2.30±0.35bB
NM5 3.19±0.68cB 0.87±0.25cB 2.32±0.36bB
JQ7 4.29±0.49bcAB 1.09±0.28bcAB 3.20±0.40abAB
JQ8 5.27±0.52abA 1.38±0.36abA 3.89±0.43aA
作用Effect
土壤类型
Soil type
** ** **
品种 Variety ** ** **
土壤类型×品种
Soil type×Variety
** ** **

Fig.3

Eighteen amino acids yield per 1000-grain in different soil types(A) and different varieties(B)"

[1] 赵广才, 常旭虹, 刘利华 , 等. 施氮量对不同强筋小麦产量和加工品质的影响. 作物学报, 2006,32(5):723-727.
doi: 10.3321/j.issn:0496-3490.2006.05.016
[2] 常旭虹, 赵广才, 王德梅 , 等. 生态环境与施氮量协同对小麦籽粒微量元素含量的影响. 植物营养与肥料学报, 2014,20(4):885-895.
doi: 10.11674/zwyf.2014.0410
[3] 王德梅, 赵广才, 常旭虹 , 等. 土壤相对含水量对冬小麦氮素积累、蛋白质组成和加工品质的影响. 麦类作物学报, 2014,34(9):1245-1252.
[4] 熊淑萍, 王静, 王小纯 , 等. 耕作方式及施氮量对砂姜黑土区小麦氮代谢及籽粒产量和蛋白质含量的影响. 植物生态学报, 2014,38(7):767-775.
doi: 10.3724/SP.J.1258.2014.00072
[5] 孙敏, 葛晓敏, 高志强 , 等. 不同降水年型休闲期耕作蓄水与旱地小麦籽粒蛋白质形成的关系. 中国农业科学, 2014,47(9):1692-1704.
doi: 10.3864/j.issn.0578-1752.2014.09.004
[6] 杨阳, 熊淑萍, 刘娟 , 等. 土壤质地对强筋型小麦郑麦366氮代谢及氮利用效率的影响. 麦类作物学报, 2013,33(3):466-471.
doi: 10.7606/j.issn.1009-1041.2013.03.011
[7] 王浩, 马艳明, 宁堂原 , 等. 不同土壤类型对优质小麦品质及产量的影响. 石河子大学学报(自然科学版), 2006,24(1):75-78.
doi: 10.3969/j.issn.1007-7383.2006.01.019
[8] 刘慧, 王朝辉, 李富翠 , 等. 不同麦区小麦籽粒蛋白质与氨基酸含量及评价. 作物学报, 2016,42(5):768-777.
doi: 10.3724/SP.J.1006.2016.00768
[9] 燕丽, 王志忠, 郑文寅 , 等. 基因型和环境对安徽小麦品质性状的影响. 麦类作物学报, 2016,36(11):1497-1501.
doi: 10.7606/j.issn.1009-1041.2016.11.12
[10] 李朝苏, 吴晓丽, 汤永禄 , 等. 四川近十年小麦主栽品种的品质状况. 作物学报, 2016,42(6):803-812.
doi: 10.3724/SP.J.1006.2016.00803
[11] 蔡艳, 郝明德 . 黄土高原长期施肥对小麦籽粒蛋白质营养品质的影响. 核农学报, 2013,27(9):1378-1384.
[12] 南镇武, 梁斌, 刘树堂 , 等. 长期定位施肥对冬小麦籽粒品质的影响.华北农学报, 2015(4):162-167.
doi: 10.7668/hbnxb.2015.04.028
[13] 郑志松, 王晨阳, 牛俊义 , 等. 水肥耦合对冬小麦籽粒蛋白质及氨基酸含量的影响. 中国生态农业学报, 2011,19(4):788-789.
doi: 10.3724/SP.J.1011.2011.00788
[14] 谢迎新, 刘超, 朱云集 , 等. 氮、硫配施对冬小麦氮素利用效率及产量的影响. 植物营养与肥料学报, 2015,21(1):64-71.
doi: 10.11674/zwyf.2015.0107
[15] 李焕春, 高炳德, 妥德宝 , 等. 氮肥品种及施用时期对春小麦籽粒氨基酸含量的影响.中国土壤与肥料, 2009(1):12-15.
[16] 张迪, 王红光, 贾彬 , 等. 播后镇压和冬前灌溉对冬小麦干物质转移和氮素利用效率的影响. 麦类作物学报, 2017,37(4):535-542.
doi: 10.7606/j.issn.1009-1041.2017.04.15
[17] 熊淑萍, 吴克远, 王小纯 , 等. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016,49(12):2267-2279.
doi: 10.3864/j.issn.0578-1752.2016.12.003
[18] 郭明明, 赵广才, 郭文善 , 等. 追氮时期和施钾量对小麦氮素吸收运转的调控. 植物营养与肥料学报, 2016,22(3):590-597.
doi: 10.11674/zwyf.15089
[19] 王绍中, 李春喜, 罗艳蕊 , 等. 基因型和地域分布对小麦籽粒氨基酸含量影响的研究. 西北植物学报, 2001,21(3):437-445.
[20] 胡承孝, 王运华, 谭启玲 , 等. 钼、氮肥配合施用对冬小麦子粒蛋白质及其氨基酸组成的影响. 植物营养与肥料学报, 2002,8(2):224-228.
doi: 10.3321/j.issn:1008-505X.2002.02.018
[1] Wang Jianan, Li Xiaoyan, Wei Shimei, Zhao Huijie, Zhao Mingqi, Wang Yuexia. Regulation of Exogenous 5-Aminolevulinic#br# Acid on Photosynthesis and D1 Protein of#br# Wheat Seedlings under Drought Stress [J]. Crops, 2018, 34(5): 121-126.
[2] Fei Yang,Wenli Ma,Yongwei Chen,Zhansheng Zhang,Hao Wang. The Effects of Uniform Sowing and Drip Irrigation on the Spike Differentiation and Yield of Spring Wheat [J]. Crops, 2018, 34(4): 84-88.
[3] Zhiqiang Tang,Liqiang Dong,Rui Li,Liying Zhang,Na He,Yuedong Li. Effects of Nitrogen and Soil Type on Seedling Quality and Nutrient Absorption in Rice [J]. Crops, 2018, 34(3): 141-147.
[4] Mingjun Zhang,Zhongfeng Li,Lili Yu,Jun Wang,Lijuan Qiu. Identification and Screening of Protein Subunit Variation Germplasm from Both Mutants and Natural Population in Soybean [J]. Crops, 2018, 34(3): 44-50.
[5] Yan Zhang,Cui Yin,Yun’e Cao. Effects of Earthworm Fermentation Broth on Fruit and Vegetables Quality [J]. Crops, 2018, 34(1): 102-106.
[6] Shuguang Wang,Yugang Shi,Huawei Shi,Yaping Cao,Daizhen Sun. Research on Relationship between Photosynthetic Characteristics and Drought Resistance in Spring Wheat [J]. Crops, 2017, 33(6): 23-29.
[7] Shujie Wang,Hui Feng,Zhanning Gao,Zhenggang Xue,Yongqian Yang,Zhengmao Pan,Chunsheng Zhang. Effects of Nitrogen Fertilization Rate on Grain Filling and Yield of Two Barley Varieties with Different Row Type [J]. Crops, 2017, 33(4): 129-133.
[8] Yixin Tian,Fengju Gao. The Response of Growth and Dry Matter Accumulation and Distribution of High Protein Soybean to Plant Density [J]. Crops, 2017, 33(2): 121-125.
[9] Chaowu Zeng,Xiaodong Liang,Jianjiang Li. Genetic Diversity Analysis on Main Characters of Spring Wheat Germplasms in Central Asia [J]. Crops, 2017, 33(2): 67-71.
[10] Xiushi Yang,Zhongxian Guo,Huimin Guo,Hui Wang,Sancai Liu. Effects of Sowing Date and Seeding Density on the Yield and Quality of Buckwheat [J]. Crops, 2017, 33(1): 88-93.
[11] Ximing Xu,Xin Zhang,Lili Shi,Jing Cui,Deliang Ding,Hongyan Qu,Shouxian Gu,Yongjie Li. Evaluation of Rice Quality with Low Amylose Content in Hybrid Japonica Rice Combinations [J]. Crops, 2016, 32(6): 44-48.
[12] Shuyan Wang,Bing Han,Simin Zhou,Jun Xu. Correlation Analysis between the Expression of Stearoyl Acyl Carrier Protein Dehydrogenase Gene and the Soluble Sugar and Fat Content of Oil Flax [J]. Crops, 2016, 32(4): 56-61.
[13] Jinjun Cai,Wei Dang,Liguo Dong,Yuanrun Zhang,Yueling Wang. Mixed Sowing Technology between Alfalfa and Leymus chinensis in the Mountainous Area of Southern Ningxia [J]. Crops, 2016, 32(3): 123-127.
[14] Lu Wang,Zihang Cheng,Yongchao Song,Xiaonan Wang,Lianshuang Fu,Zhuofu Li,Lu Chen. Impacts of Contents of Soluble Sugars and Protein in Leaves of Winter Wheat on Spike Differentiation in Frigid Region [J]. Crops, 2016, 32(3): 99-103.
[15] Bowen Guo,Xue Zhao,Xiaoshuang Wei,Yanjing Han,Qiangfei Liang,Bo Song,Shanshan Liu. Development of a Set of 7S and 11S Multi-Subunit-Deficient Mutants with Chinese Soybean Genetic Background [J]. Crops, 2016, 32(2): 43-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .