Crops ›› 2018, Vol. 34 ›› Issue (5): 85-90.doi: 10.16035/j.issn.1001-7283.2018.05.013

Previous Articles     Next Articles

QTL Mapping for Photosynthesis Related Traits in Upland Cotton

Tang Liyuan,Li Xinghe,Zhang Sujun,Wang Haitao,Liu Cunjing,Zhang Xiangyun,Zhang Jianhong   

  1. Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture/National Cotton Improvement Center Hebei Branch, P.R. China, Shijiazhuang 050051, Hebei, China
  • Received:2018-03-12 Revised:2018-05-07 Online:2018-10-15 Published:2018-10-12
  • Contact: Jianhong Zhang

Abstract:

Photosynthesis provides a major material basis for the yield formation of cotton. A genetic linkage map was constructed for an F2 population of 196 cotton plants derived from a cross between two upland cotton parental lines of Jiyou 861 and Xinluzao 25 with SSR (Simple Sequence Repeat) markers. The map included 30 markers distributing in 4 linkage groups, full length 244.4cM. Based on the inclusive composite interval mapping method with QTL IciMapping 4.1, 10 QTLs (quantitative trait locus) were identified in the F2:3 population, including three QTLs for photosynthetic rates, two for stomatal conductance, one for intercellular CO2 concentration, one for transpiration rate and three for chlorophyll content, in which there were one photosynthetic rate QTL and one intercellular CO2 concentration QTL were located on chromosomes of D3 and D7, respectively. The research lays the foundation for fine mapping and cloning of QTL for photosynthesis related traits in cotton and provide a theoretical basis for combining molecular marker assisted breeding with high photosynthetic efficiency in cotton.

Key words: Cotton, Photosynthesis trait, Chlorophyll content, SSR marker, QTL mapping

Table 1

Photosynthesis related traits between parents and F2:3 populations of (Jiyou 861×Xinluzao 25)"

性状
Trait
亲本Parent F2:3群体F2:3 population
冀优861
Jiyou 861
新陆早25号
Xinluzao 25
均值
Mean
极小值
Minimum
极大值
Maximum
标准差
Standard deviation
偏度
Skewness
峰度
Kurtosis
Pn [μmol/(m2·s)] 24.71 13.52 14.74 8.32 25.28 3.24 0.47 0.22
Gs [μmol/(m2·s)] 0.24 0.20 0.18 0.08 0.32 0.04 0.34 0.17
Ci [μmol/mol] 206.29 246.36 246.48 171.53 324.32 25.69 0.10 0.28
Tr [μmol/(m2·s)] 4.95 3.33 3.43 1.66 5.26 0.88 0.05 -0.71
SPAD 53.05 43.50 49.53 39.98 58.52 2.75 -0.32 0.96

Fig.1

Normal distribution of photosynthesis related traits"

Table 2

Analysis of correlation among photosynthesis related traits in F2:3 population"

性状Trait Pn Gs Ci Tr
Gs 0.685**
Ci -0.582** 0.076
Tr 0.546** 0.814** -0.041
SPAD 0.127 0.004 -0.142* 0.000

Table 3

The analysis of QTL for photpsynthesis related traits in F2:3 population"

QTL 连锁群/染色体
Linkage group/Chromosome
位置(cM)
Position
左标记
Left marker
右标记
Right marker
LOD 加性效应
Additive effect
显性效应
Dominant effect
贡献率(%)
Contribution rate
qPn-1-1 LG1 44 STV031 SWU20241 2.06 2.74 1.50 8.17
qPn-1-2 LG1 98 SWU16417 BNL0830 2.12 2.81 -1.72 17.30
qPn-2-1 D3 22 SWU12703 SWU12406 3.20 -2.75 -0.09 22.87
qGs-1-1 LG1 45 STV031 SWU20241 2.23 0.04 0.00 20.55
qGs-1-2 LG1 140 SWU11499 SWU11689 2.06 -0.04 -0.04 17.11
qCi-4-1 D7 0 SWU10641 SWU10568 2.19 -15.39 -21.56 31.89
qTr-1-1 LG1 1 GL607 GL222 2.14 -0.11 1.30 3.31
qSPAD-1-1 LG1 1 GL607 GL222 3.16 0.73 -3.92 10.98
qSPAD-1-2 LG1 27 GL222 STV031 2.26 2.44 0.82 10.97
qSPAD-1-3 LG1 50 SWU20241 SWU11125 2.53 -0.38 2.98 5.90

Fig.2

The genetic linkage map and QTLs for photosynthesis related traits of (Jiyou 861×Xinluzao 25) "

[1] 许晓明, 戴新宾, 陆巍 , 等. 细胞核、细胞质基因与光合作用的关系. 生物学通报, 1999,34(10):5-6.
[2] 耿小红, 武艳芍, 杨林 . 小麦ITMI重组自交系群体的叶片叶绿素含量. 四川农业大学学报, 2017,35(2):139-143.
[3] 刘胜男, 甘剑锋, 张海萍 , 等. 小麦RILs群体叶绿素含量和千粒重相关分析及QTL定位. 安徽农业大学学报, 2013,40(4):570-574.
[4] 余婷婷, 刘朝显, 梅秀鹏 , 等. 玉米光合性状的相关性及QTL分析. 西南大学学报(自然科学版), 2015,37(9):1-10.
[5] 胡茂龙, 王春明, 杨权海 , 等. 水稻光合功能相关性状QTL分析. 遗传学报, 2005,32(8):818-824.
[6] 刘进, 王嘉宇, 姜树昆 , 等. 水稻叶绿素含量动态QTL分析. 植物生理学报, 2012,48(6):577-583.
[7] 李伟, 潘校成, 于洪潇 , 等. 大豆叶绿素含量QTL定位及候选基因预测. 基因组学与应用生物学, 2016,35(7):1793-1799.
[8] 印志同, 宋海娜, 孟凡凡 , 等. 大豆光合气体交换参数的QTL分析. 作物学报, 2010,36(1):92-100.
doi: 10.3724/SP.J.1006.2010.00092
[9] 戎福喜, 汤丽魁, 唐媛媛 , 等. 海陆渐渗系棉花吐絮期叶绿素含量、荧光参数及相关性状的QTL定位分析. 棉花学报, 2015,27(5):417-426.
[10] 郑巨龙, 龚照龙, 王俊铎 , 等. 新疆陆地棉遗传连锁图谱构建及叶绿素含量和光合速率的QTL定位. 新疆农业科学, 2014,51(9):1577-1582.
[11] 宋美珍 . 短季棉早熟不早衰生化遗传机制及QTL定位. 北京:中国农业科学院, 2006.
[12] Saranga Y, Menz M, Jiang C X , et al. Genomic dissection of genotype×environment interactions conferring adaptation of cotton to arid conditions. Genome Research, 2001,11:1988-1995.
doi: 10.1101/gr.157201
[13] 秦鸿德, 张天真 . 棉花叶绿素含量和光合速率的QTL定位. 棉花学报, 2008,20(5):394-398.
doi: 1002-7807(2008)05-0394-05
[14] 王鹏, 张天真 . 利用棉花海陆种间染色体片段导入系剖析光合色素含量的遗传基础. 作物学报, 2012,38(6):947-953.
doi: 10.3724/SP.J.1006.2012.00947
[15] Song X L, Guo W Z, Han Z G , et al. Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton. Journal of Integrative Plant Biology, 2005,47(11) : 1382-1390.
doi: 10.1111/jipb.2005.47.issue-11
[16] Song X L, Zhang T Z . Molecular mapping of quantitative trait loci controlling chlorophyll content at different developmental stages in tetraploid cotton. Plant Breed, 2010,129:533-540.
[17] 张建 . 陆地棉遗传图谱标记加密与衣分、光合性状的QTL定位. 重庆:西南大学, 2012.
[18] 张建, 刘大军, 林刚 , 等. 陆地棉叶绿素质量分数QTL定位. 西南大学学报(自然科学版), 2011,3(4):1-4.
[19] Parerson A H, Brubaker C L, Wendel J F . A rapid method for extraction of cotton (Gossypium spp) genomic DNA suitable for RFLP and PCR analysis. Plant Molecular Biology Reporter, 1993,11(2):122-127.
doi: 10.1007/BF02670470
[20] 张军, 武耀廷, 郭旺真 , 等. 棉花微卫星标记的PAGE/银染快速检测. 棉花学报, 2000,12(5):267-269.
[21] Zhang T Z, Qian N, Zhu X F , et al. Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. Plos One, 2013,8(2):e57220.
doi: 10.1371/journal.pone.0057220
[22] Jamshed M, Jia F, Gong J W , et al. Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. BMC Genomics, 2016,17:197.
doi: 10.1186/s12864-016-2560-2
[23] Liang Z, Lü Y D, Cai C P , et al. Toward allotraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics, 2012,13:539.
doi: 10.1186/1471-2164-13-539
[24] Stuber C W, Lincoln S E, Wolff D W , et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genome, 2006,49(5):545-555.
doi: 10.1139/g06-002
[25] 陈祖海, 刘金兰, 聂以春 . 陆地棉族系种质系与陆地棉品种间的杂种优势利用研究. 棉花学报, 1994,6(3):151-154.
[26] Bhatt J G , Rao M R K. Heterosis in growth and photosynthetic rates in hybrids of cotton. Euphytica, 1980,30:129-133.
[27] Li F G, Fan G Y, Lu C R , et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1). Nature Biotechnology, 2015,33(5):524-530.
doi: 10.1038/nbt.3208
[28] Zhang T Z, Hu Y, Jiang W K , et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015,33(5):531-537.
doi: 10.1038/nbt.3207
[1] Wen Zhang,Tao Lu,Yuxia Ye,Quanyi Liu,Yang Feng. Studies on the Effect of Mixed Defoliant on Cotton in Kuitun District, Xinjiang [J]. Crops, 2018, 34(3): 103-107.
[2] Shuai Zhang,Yuhui Pang,Zhenghong Wang,Liming Wang,Chunyan Chen,Zhankui Zeng,Chunping Wang. Variation of Agronomic Traits and Genetic Diversity in Wheat Germplasms [J]. Crops, 2018, 34(2): 44-51.
[3] Lihua Liu,Shaohua Yuan,Shuying Feng,Binshuang Pang,Hongbo Li,Yangna Liu,Liping Zhang,Changping Zhao. Genetic Difference Analysis and Construction of SSR Fingerprinting Database for F-Type Wheat Male Sterile Line and Restorer Lines [J]. Crops, 2017, 33(6): 30-36.
[4] Haihua Luo,Deyi Shao,Gong Chen,Xiumin Xu,Xin Gao,Changkai Yuan,Jinjian Peng,Feiyu Tang. Comparative Analysis of Trait Correlation between Conventional Varieties (Lines) and Hybrids of Cotton [J]. Crops, 2017, 33(5): 31-37.
[5] Changhui Feng,Youchang Zhang,Shu Bie,Jiaohai Zhang,Xiaogang Wang,Songbo Xia,Cheng Zhang,Hongde Qin. Research Progress on Improvement for Verticillium Wilt Resistance by Molecular Marker-Assisted Selection in Cotton [J]. Crops, 2017, 33(5): 21-25.
[6] Min Xu,Yushu Hu,Jinglin Li,Lulu Jin,Zisheng Wang. Clustering and Correlation Analysis of Earlier-Mauture Cotton Innovation Germplasm based on Biological Characters [J]. Crops, 2017, 33(1): 25-31.
[7] Xiefei Zhu,Shenghua Li,Sen Wang. Combining Ability Analysis of Verticillium Wilt-Resistance in Five Resistant Cultivars [J]. Crops, 2016, 32(6): 33-37.
[8] Xue Jiang,Xiaosong Ma,Lijun Luo,Hongyan Liu. QTL Mapping of Phenotypic Traits under Drought Stress Simulated by PEG-6000 in Rice Seedlings [J]. Crops, 2016, 32(5): 31-37.
[9] Sujun Zhang,Liyuan Tang,Cunjing Liu,Zhenxing Jiang,Jina Chi,Haiyan Tian,Xinghe Li,Jianhong Zhang,Xiangyun Zhang. Association Analysis of Fiber Quality with SSR Markers in Gossypium barbadense L. [J]. Crops, 2016, 32(4): 93-100.
[10] Limin Sang,Caifeng Li,Yubo Wang,Lei Liu,Guanghao Guo,Jian Guo,Ming Chen. Effects of Na2SO4+NaCl Mixed Salt Stress on the Growth of Sugar Beet Seedlings [J]. Crops, 2016, 32(4): 137-141.
[11] Tian Weiliang, Ge Zhenhong, Sun Hui. Preliminary Study on Extraction Process of Lignin from Cotton Seed Hulls [J]. Crops, 2013, 29(2): 130-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .