Crops ›› 2020, Vol. 36 ›› Issue (4): 158-163.doi: 10.16035/j.issn.1001-7283.2020.04.022

Previous Articles     Next Articles

Morphological and Physiological Differences of Maize Inbred Lines at Seedling Stage under Waterlogging Stress

Zheng Fei(), Wang Lixia, Liu Ruixiang, Kong Lingjie, Chen Yanping, Yuan Jianhua, Cui Yakun()   

  1. Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Agrobiology of Jiangsu Province, Nanjing 210014, Jiangsu, China
  • Received:2019-10-22 Revised:2019-11-16 Online:2020-08-15 Published:2020-08-11
  • Contact: Cui Yakun E-mail:540061782@qq.com;cuiyakun1920@163.com

Abstract:

To investigate the effects of waterlogging during seedling stage on morphology and physiology and to evaluate the genotypic differences, thirty-five maize inbred lines were used. The results showed that morphological and physiological traits were significantly affected by waterlogging stress. Principle component analysis indicated that SPAD, leaf area, plant height, root biomass, stem biomass, leaf biomass and total biomass had more proportion. The waterlogging tolerance indexes of total biomass, leaf biomass, stem biomass, root biomass and leaf area could be used for screening superior genotypes. The thirty-five maize inbred lines were classified into three groups as sensitive (seventeen inbred lines), mean type (six inbred lines) and tolerant (twelve inbred lines).

Key words: Maize, Seedling stage, Morphology, Physiology, Waterlogging stress

Table 1

The tested maize inbred lines in the experiment"

编号Code 材料名称Material name 备注Note 编号Code 材料名称Material name 备注Note
1 HCL645 迪卡517母本 19 JS131010 JS06730改良系
2 PH6WC 先玉335母本 20 JS111067 齐319改良系
3 郑58 Zheng 58 郑单958母本 21 JS161111 JS06730改良系
4 JS161022 Su95-1改良系 22 JS141073 JS06730改良系
5 苏95-1 Su 95-1 苏玉29母本 23 JS131061 JS06730改良系
6 JS131160 Su95-1改良系 24 JS161199 JS06730改良系
7 JS161131 Su95-1改良系 25 JS161116 JS06730改良系
8 JS161527 Su95-1改良系 26 JS141043 JS06730改良系
9 JS161045 Su95-1改良系 27 JS141045 JS06730改良系
10 JS161133 Su95-1改良系 28 JS161474 JS06730改良系
11 JS161136 Su95-1改良系 29 JS141027 JS06730改良系
12 JS161137 Su95-1改良系 30 JS06730 苏玉39父本
13 JS161061 Su95-1改良系 31 PH4CV 先玉335父本
14 JSD1189 Su95-1改良系 32 D1798Z 迪卡517父本
15 JS131089 JS06730改良系、苏科玉1417父本 33 JS151181 JS06730改良系
16 JS121042 JS06730改良系、苏科玉1409父本 34 昌7-2 Chang 7-2 郑单958父本
17 JS141004 JS06730改良系 35 齐319 Qi 319 鲁单981母本
18 JS161107 JS06730改良系

Table 2

Effects of waterlogging stress on morphological and physiological indexes in maize inbred lines at seedling stage"

指标
Index
对照Control 淹水Waterlogging 耐涝指数Waterlogging tolerance index
最大值
Maximum
最小值
Minimum
平均值
Mean
变异系数
Variable coefficient (%)
最大值
Maximum
最小值Minimum 平均值
Mean
变异系数
Variable coefficient (%)
最大值
Maximum
最小值Minimum 平均值Mean 变异系数
Variable coefficient (%)
φPSⅡ 0.64 0.50 0.56A 6.75 0.61 0.41 0.52B 10.61 1.01 0.75 0.92 7.77
NPQ 0.28 0.06 0.19B 30.09 0.44 0.10 0.26A 31.21 2.30 1.01 1.42 26.75
SPAD 60.51 40.89 53.47A 9.12 47.99 27.77 39.70B 11.77 1.03 0.51 0.75 13.37
叶片厚度
Leaf thickness (mm)
1.81 1.42 1.61A 6.94 1.72 1.10 1.45B 10.88 1.15 0.67 0.90 12.44
叶面积(cm2/株)
Leaf area (cm2/plant)
338.70 128.70 228.70A 21.99 170.70 55.50 108.30B 25.37 0.71 0.32 0.48 18.01
株高Plant height (cm) 55.30 34.50 43.60A 10.42 40.00 21.60 30.90B 15.10 0.84 0.55 0.71 10.17
根长Root length(cm) 53.70 25.60 37.00A 19.96 31.10 12.90 22.50B 20.21 1.00 0.39 0.62 18.64
根数Root number 22.00 9.30 13.40A 19.24 20.70 8.30 13.90A 20.02 1.57 0.69 1.04 17.80
根干物重(g/株)
Root biomass (g/plant)
0.73 0.18 0.43A 32.33 0.30 0.07 0.15B 35.70 0.59 0.20 0.36 28.28
茎干物重(g/株)
Stem biomass (g/plant)
0.46 0.15 0.31A 28.06 0.41 0.11 0.24B 33.72 0.98 0.54 0.78 18.06
叶干物重(g/株)
Leaf biomass (g/plant)
0.73 0.25 0.49A 24.56 0.39 0.11 0.24B 31.52 0.80 0.33 0.49 25.77
总干物重(g/株)
Total biomass (g/plant)
1.80 0.60 1.20A 25.39 1.09 0.30 0.63B 32.10 0.75 0.33 0.51 21.60
根冠比Root/shoot ratio 0.78 0.25 0.54A 21.71 0.44 0.24 0.31B 16.33 1.13 0.36 0.60 23.36

Table 3

Principle component analysis on 13 waterlogging tolerance indexes"

耐涝指数
Waterlogging tolerance index
因子1
Factor 1
因子2
Factor 2
因子3
Factor 3
因子4
Factor 4
φPSⅡ 0.21 -0.77 0.46 -0.02
NPQ -0.31 0.68 -0.54 0.08
SPAD 0.66 -0.31 0.14 0.38
叶片厚度Leaf thickness 0.22 -0.11 -0.15 0.89
叶面积Leaf area 0.77 0.09 -0.03 -0.29
株高Plant height 0.67 -0.21 0.02 -0.33
根长Root length 0.15 0.35 0.68 0.00
根数Root number 0.52 -0.05 -0.43 -0.22
根干物重Root biomass 0.74 0.58 0.23 0.06
茎干物重Stem biomass 0.83 -0.01 -0.22 -0.03
叶干物重Leaf biomass 0.93 -0.03 -0.15 0.07
总干物重Total biomass 0.95 0.21 -0.07 0.06
根冠比Root/shoot ratio 0.06 0.78 0.48 0.06
特征值Eigenvalue 4.96 2.34 1.56 1.20
贡献率Contribution rate (%) 38.15 17.97 11.97 9.20
累计贡献率
Cumulative contribution rate (%)
38.15 56.11 68.09 77.29

Table 4

Correlation analysis of morphological and physiological indexes under waterlogging stress at maize seedling stage"

指标
Index
φPSⅡ NPQ SPAD 叶片厚度
Leaf thickness
叶面积
Leaf
area
株高
Plant
height
根长
Root
length
总根数
Root
number
根干物重
Root
biomass
茎干物重
Stem
biomass
叶干物重
Leaf
biomass
总干物重
Total
biomass
NPQ -0.80**
SPAD -0.35* -0.41*
叶片厚度Leaf thickness -0.04 -0.03 -0.37*
叶面积Leaf area -0.12 -0.23 -0.22 0.03
株高Plant height -0.21 -0.30 -0.53** -0.11 0.44**
根长Root length -0.01 -0.13 -0.00 -0.01 0.14 -0.06
根数Root number -0.07 -0.10 -0.22 0.10 0.50** -0.35* -0.11
根干物重Root biomass -0.15 -0.02 -0.38* 0.08 0.56** -0.34* -0.33 -0.21
茎干物重Stem biomass -0.13 -0.06 -0.49** 0.10 0.50** -0.55** -0.02 -0.34* 0.58**
叶干物重Leaf biomass -0.16 -0.22 -0.55** 0.29 0.75** -0.52** -0.09 -0.50** 0.61** -0.78**
总干物重Total biomass -0.04 -0.10 -0.53** 0.22 0.71** -0.51** -0.15 -0.41* 0.82** -0.87** -0.92**
根冠比Root/shoot tatio -0.34* -0.21 -0.04 -0.10 0.07 -0.12 -0.42* -0.13 0.68** -0.13 -0.09 0.16

Fig.1

System clustering of 35 maize inbred lines"

Table 5

Differences of waterlogging tolerance at seedling stage among three maize inbred lines"

类型
Type
耐涝指数Waterlogging tolerance index
叶干物重
Leaf
biomass
总干物重
Total
biomass
茎干物重
Stem
biomass
叶面积
Leaf
area
根干物重
Root biomass
敏感型
Sensitive type
0.39B 0.42C 0.65B 0.42B 0.29B
中间型
Mean type
0.48B 0.53B 0.87A 0.48B 0.37AB
耐涝型
Tolerant type
0.63A 0.63A 0.90A 0.56A 0.44A
[1] 邓汗青, 罗勇 . 近50年长江中下游春季和梅雨期降水变化特征. 应用气象学报, 2013,24(1):23-31.
[2] 张桂香, 霍治国, 杨建莹 , 等. 江淮地区夏玉米涝渍灾害时空分布特征和风险分析. 生态学杂志, 2017,36(3):747-756.
[3] Lone A A, Khan M H, Dar Z A , et al. Breeding strategies for improving growth and yield under waterlogging conditions in maize:A review. Maydica, 2016,61(1):1-11.
[4] Ren B, Zhang J, Dong S , et al. Responses of carbon metabolism and antioxidant system of summer maize to waterlogging at different stages. Journal of Agronomy & Crop Science, 2018,204(5):505-514.
[5] Li W, Mo W, Ashraf U , et al. Evaluation of physiological indices of waterlogging tolerance of different maize varieties in South China. Applied Ecology and Environmental Research, 2018,16(2):2059-2072.
[6] 王秀玲, 董朋飞, 王群 , 等. 淹水胁迫条件下玉米苗期叶片蛋白质组学分析. 河南农业大学学报, 2015,49(5):608-615.
[7] Panozzo A, Dal Cortivo C, Ferrari M , et al. Morphological changes and expressions of AOX1A,CYP81D8,and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging. Frontiers in Plant Science, 2019,10:62.
[8] 马玉平, 孙琳丽, 马晓群 . 黄淮海地区夏玉米对干旱和涝渍的生理生态反应. 干旱地区农业研究, 2016,34(4):85-93.
[9] 僧珊珊, 王群, 张永恩 , 等. 外源亚精胺对淹水胁迫玉米的生理调控效应. 作物学报, 2012,38(6):1042-1050.
[10] 朱敏, 史振声, 李凤海 . 玉米耐涝机理研究进展. 玉米科学, 2015,23(1):122-127.
[11] 宁金花, 张艳桂, 解娜 , 等. 苗期渍涝对南方春玉米形态影响的试验研究. 华北农学报, 2015,30(S1):449-455.
[12] 余卫东, 冯利平, 胡程达 , 等. 苗期涝渍对黄淮地区夏玉米生长和产量的影响. 生态学杂志, 2015,34(8):2161-2166.
[13] 王成雨, 宋贺, 胡玲惠 , 等. 玉米品种耐淹形态指标筛选及其耐淹光合生理特性研究. 安徽农业大学学报, 2014,41(4):533-539.
[14] Liu Y Z, Tang B, Zheng Y L , et al. Screening methods for waterlogging tolerance at maize (Zea mays L.) seedling stage. Agricultural Sciences in China, 2010,9(3):362-369.
[15] 袁建华, 孟庆长, 陈艳萍 等. 优良玉米自交系苏951的配合力分析及应用. 玉米科学, 2009,17(6):9-11,14.
[16] Tang B, Xu S Z, Zou X L , et al. Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging-tolerant and waterlogging-sensitive maize genotypes at seedling stage. Agricultural Sciences in China, 2010,9(5):651-661.
[17] Tian L X, Bi W S, Liu X , et al. Effects of waterlogging stress on the physiological response and grain-filling characteristics of spring maize (Zea mays L.) under field conditions. Acta Physiologiae Plantarum, 2019,41(5):1-14.
[18] 余卫东, 冯莉评, 胡程达 . 涝渍胁迫下玉米苗期不同叶龄叶片光合特性. 玉米科学, 2019,27(5):73-80,86.
[19] 王吉, 李凤海, 吕香玲 , 等. 淹水对糯玉米耐涝性差异近等基因系生理指标的影响. 玉米科学, 2018,26(5):65-70.
[20] 任佰朝, 张吉旺, 董树亭 , 等. 生育前期淹水对夏玉米冠层结构和光合特性的影响. 中国农业科学, 2017,50(11):2093-2103.
[21] Grzesiak M T, Szczyrek P, Rut G , et al. Interspecific differences in tolerance to soil compaction,drought and waterlogging stresses among maize and triticale genotypes. Journal of Agronomy & Crop Science, 2015,201(5):330-343.
[22] 王业建, 郗浩江, 李铭东 , 等. 我国47份主要玉米自交系耐旱性分析. 玉米科学, 2018,26(4), 10-16.
[23] 王利锋, 唐保军, 王振华 , 等. 不同类型玉米品种间子粒脱水速率相关分析. 玉米科学, 2018,26(2), 64-70.
[1] Wang Li, Wang Zuoping, Zhang Zhongbao, Bai Ling, Wu Zhongyi. Screening of Strongly Expressed Promoters in Immature Maize Kernels [J]. Crops, 2020, 36(4): 114-120.
[2] Li Qiang, Kong Fanlei, Yuan Jichao. Effects of Interannual Meteorological Factors on Maize Dry Matter Accumulation and Yield in the Hilly Area of Southwest China [J]. Crops, 2020, 36(4): 150-157.
[3] Yuan Wenya, Zhao Xiaolei, Zhou Xumei, Wang Lei, Peng Bo, Wang Yi. The Development of waxy Gene Function Marker and Its Application in Waxy Maize Breeding [J]. Crops, 2020, 36(4): 99-106.
[4] He Wanchun, Huang Kai, Ling Peng, Chen Zixiong, Wang Jingcai, Pan Xiaochun, Zhang Juanning, Li Pengcheng. Effects of Different Ratio of Organic Fertilizer Nitrogen to Fertilizer Nitrogen on the Absorption Capacity and Morphology of Potato Roots [J]. Crops, 2020, 36(3): 132-136.
[5] Song Qiulai, Wang Qi, Feng Yanjiang, Sun Yu, Zeng Xiannan, Lai Yongcai. Effects of Paddy-Upland Rotation and Straw Returning on Soil Related Enzyme Activities in Cold Region [J]. Crops, 2020, 36(3): 149-153.
[6] Liu Jian, Sun Bin, Zhang Weiqiang, Feng Xiaoxi, Zhang Jiyang, Ning Dongfeng, Qin Anzhen, Liu Zhandong, Qiao Miao, Shen Hongli, Xu Yan. Effects of Chemical Regulating on Grain Harvest Quality and Water Use Efficiency in Summer Maize [J]. Crops, 2020, 36(3): 161-168.
[7] Zhang Ziqiang, Bai Chen, Zhang Huizhong, Li Xiaodong, Wang Liang, Fu Zengjuan, Zhao Shangmin, E Yuanyuan, Zhang Hui, Zhang Bizhou. Research Progress on Morphology, Physiological and Biochemical Characteristics, and Molecular Level of Salt Stress in Sugar Beet [J]. Crops, 2020, 36(3): 27-33.
[8] Zhou Zichao, Hou Jianhua, Zhen Zilong, Shi Huimin. Drought-Resistance Identification and Evaluation of 152 Sunflower Recombinant Inbred Lines (RILs) at Seedling Stage [J]. Crops, 2020, 36(3): 47-52.
[9] Zhang Zhizhen, Li Wen, Zhou Qixian, Sun Wei, Zheng Chongke, Xie Xianzhi. Salt Tolerance Evaluation of Different Rice Varieties at Seedling Stage [J]. Crops, 2020, 36(3): 92-101.
[10] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice [J]. Crops, 2020, 36(2): 1-8.
[11] Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures [J]. Crops, 2020, 36(2): 112-118.
[12] Li Ruijie,Tang Huihui,Wang Qingyan,Xu Yanli,Fang Mengying,Yan Peng,Dong Zhiqiang,Zhang Fenglu. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[13] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[14] Zhou Wei,Cui Fuzhu,Duan Hongkai,Hao Guohua,Yang Hui,Liu Ruirui. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[15] Wei Xiaoyi,Wang Jiamu,Ma Yi,Ma Junfeng,Hong Defeng,Wei Feng. Identification and Principal Component Analysis of Maize Combinations Suitable for Mechanical Grain Harvesting [J]. Crops, 2020, 36(2): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!