Crops ›› 2021, Vol. 37 ›› Issue (2): 124-129.doi: 10.16035/j.issn.1001-7283.2021.02.017

;

Previous Articles     Next Articles

Responses of Broomcorn Prosomillet Growth, Yield and Soil Environment to Different Film-Mulching Planting Patterns in Dryland

Zhang Xiaojuan(), Zhang Shangpei, Cheng Bingwen(), Luo Shiwu, Wang Yong, Yang Junxue, Wang Xiaojun   

  1. Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan 756000, Ningxia, China
  • Received:2020-05-29 Revised:2020-12-30 Online:2021-04-15 Published:2021-04-16
  • Contact: Cheng Bingwen E-mail:elizabeth2006love@163.com;nxgycbw@126.com

Abstract:

In order to explore effective cultivation measures suitable for the production of broomcorn prosomillet in dryland in the southern mountainous area of Ningxia, and to provide theoretical basis for the development of the prosomillet industry, a research work was conducted based on the analysis of growth period, agronomic traits, yield and vertical distribution characteristics of soil nutrients and soil enzyme activity under the three different patterns for two consecutive years. We chose three film-mulching planting patterns (ridge planting mode, furrow planting mode and ridging film-mulching mode) as the research objects, and took the flat planting with no film mulching for control. The results showed the ridging film-mulching mode increased the plant height, biomass of broomcorn prosomillet, and shortened the growth period of broomcorn prosomillet significantly, and led to a greater accumulation of dry matter throughout the growing season than other treatments, therefore, the ridging film-mulching mode significantly increased the yield of broomcorn prosomillet. The film-covered planting improved the contents of soil total nitrogen, total phosphorus and the soil organic carbon in 0-40cm soil layers significantly, and the contents of C, N, P decreased gradually with deeper soil layers. The activity of soil urease was improved significantly by film-mulching planting patterns in 0-20cm soil layers, the effects of ridging film-mulching mode on the overall soil fertility and yield of broomcorn prosomillet was most obvious. The ridging film-mulching mode improved soil hydrothermal conditions, enhanced soil enzyme activity, promoted the circulation of nutrients in the soil and improved soil fertility, which was an effective cultivation measure suitable for the production of prosomillet in the arid and semi-arid areas of southern Ningxia.

Key words: Prosomillet, Growth, Yield, Soil, Film-mulching planting

Table 1

The growth stages of prosomillet under different treatments 月-日 month-day"

处理Treatment 播种期Sowing 出苗期Emergence 拔节期Jointing 抽穗期Tasseling 成熟期Maturity 生育期Growth period (d)
CK 5-18 5-30 7-05 7-26 8-26 88
RM 5-18 5-30 7-05 7-22 8-22 84
FM 5-18 5-30 7-05 7-20 8-22 84
RFM 5-18 5-30 7-05 7-18 8-20 82

Fig.1

Variation of plant height of prosomillet under different treatments"

Table 2

Variation of dry matter accumulation and gross weight/dry weight of prosomillet under different treatments"

处理
Treatment
出苗期Emergence 拔节期Jointing 抽穗期Tasseling 成熟期Maturity
干物质积累量
Dry matter accumulation (g)
鲜干比
Gross weight/
dry weight
干物质积累量
Dry matter accumulation (g)
鲜干比
Gross weight/
dry weight
干物质积累量
Dry matter accumulation (g)
鲜干比
Gross weight/
dry weight
干物质积累量
Dry matter accumulation (g)
鲜干比
Gross weight/
dry weight
CK 0.6C 5.44D 2.3C 4.26D 5.3C 4.74A 11.2D 1.68A
RM 1.2A 5.71C 2.8A 3.79C 6.6B 3.97C 15.9B 1.55B
FM 0.7B 5.75B 2.4B 4.29B 6.2A 3.97C 15.8C 1.53C
RFM 1.2A 6.57A 2.8A 4.39A 6.6A 4.15B 16.0A 1.53C

Table 3

The contents of soil organic carbon, total N, total P and enzyme activities of prosomillet under different treatments"

处理
Treatment
土层深度
Soil depth
(cm)
土壤养分Soil nutrient (g/kg) 酶活性Enzyme activity
有机碳
Organic carbon
全氮
Total N
全磷
Total P
过氧化氢酶
Catalase [mg/(g·min)]
脲酶
Urease [mg/(g·24h)]
蔗糖酶
Invertase [mg/(g·24h)]
CK 0~10 5.55B 0.62B 0.67B 0.36B 0.269B 24.67B
10~20 6.21A 0.72A 0.69A 0.36B 0.311A 33.22A
20~40 4.35C 0.58C 0.60D 0.36B 0.270C 21.78C
40~60 3.23D 0.47D 0.56F 0.37A 0.212E 20.39D
60~80 2.37E 0.25E 0.57E 0.35C 0.216D 1.82F
80~100 2.21F 0.30F 0.61C 0.36B 0.102F 1.86E
平均Mean 3.61 0.45 0.61 0.36 0.230 14.96
RM 0~10 5.95B 0.76A 0.71B 0.38A 0.290B 25.64B
10~20 6.78A 0.76A 0.72A 0.37B 0.324A 42.15A
20~40 4.27C 0.62B 0.62E 0.36C 0.250D 10.26C
40~60 3.08D 0.49C 0.58F 0.35D 0.256C 2.16E
60~80 2.20E 0.33D 0.68C 0.34E 0.169E 1.36F
80~100 2.06F 0.28E 0.66D 0.32F 0.161F 2.17D
平均Mean 3.59 0.50 0.65 0.35 0.242 9.97
FM 0~10 6.49A 0.77B 0.72A 0.37A 0.299B 35.92A
10~20 5.99B 0.79A 0.72A 0.37A 0.359A 26.45B
20~40 4.76C 0.76C 0.63B 0.36B 0.266D 11.59C
40~60 3.14D 0.51D 0.62C 0.37A 0.285C 1.79D
60~80 2.45F 0.39E 0.56D 0.37A 0.202F 1.57E
80~100 2.97E 0.30F 0.63B 0.37A 0.252E 1.12F
平均Mean 3.91 0.55 0.63 0.37 0.277 9.45
RFM 0~10 4.92C 0.65C 0.67C 0.35C 0.319B 22.81B
10~20 5.61A 0.70A 0.71A 0.36B 0.337A 27.38A
20~40 5.02B 0.67B 0.69B 0.38A 0.283C 15.35C
40~60 2.75D 0.49D 0.60D 0.36B 0.196E 1.74E
60~80 2.33E 0.35E 0.59E 0.36B 0.187F 0.99F
80~100 1.95F 0.33F 0.59E 0.33D 0.219D 2.54D
平均Mean 3.46 0.50 0.63 0.36 0.257 9.15

Fig.2

Yield of prosomillet under different treatments"

Table 4

Correlation analysis between yield and dry matter accumulation of prosomillet"

项目
Item
出苗期
Emergence
拔节期
Jointing
抽穗期
Tasseling
成熟期
Maturity
产量Yield 0.843 0.853 0.997** 0.975*
[1] 金晶炜, 苏纪帅, 白于, 等. 宁南山区土壤质量对人工植被恢复模式的响应. 农业工程学报, 2014,30(16):283-289.
[2] 张德健, 路战远, 张向前, 等. 不同耕作条件下玉米光合特性的差异. 华北农学报, 2014,29(2):161-164.
[3] 娄善伟, 赵强, 高云光, 等. 不同密度水平对覆膜棉花田间小气候及产量的影响. 干旱地区农业研究, 2009,27(5):88-92.
[4] Wang L, Li X G, Lü J T, et al. Continuous plastic-film mulching increases soil aggregation but decreases soil pH in semiarid areas of China. Soil and Tillage Research, 2017,167:46-53.
[5] Chen Y L, Liu T, Tian X H, et al. Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau. Field Crops Research, 2015,172:53-58.
[6] Gu X B, Li Y N, Du Y D. Continuous ridges with film mulching improve soil water content,root growth,seed yield and water use efficiency of winter oilseed rape. Industrial Crops and Products, 2016,85:139-148.
[7] 陈明灿, 李友军, 熊英, 等. 豫西旱地小麦不同种植方式增产效应分析. 干旱地区农业研究, 2006,24(1):29-32.
[8] 程宏波, 柴守玺, 陈玉章, 等. 西北旱地春小麦不同覆盖措施的温度和产量效应. 生态学报, 2015,35(19):6316-6325.
[9] Tian F Q, Yang P J, Hu H C, et al. Energy balance and canopy conductance for a cotton field under film mulched drip irrigation in an arid region of northwestern China. Agricultural Water Management, 2017,179:110-121.
[10] 王红丽, 张绪成, 宋尚有, 等. 旱地全膜双垄沟播玉米的土壤水热效应及其对产量的影响. 应用生态学报, 2011,22(10):2609-2614.
[11] 曹玉琴, 刘彦明, 王梅春, 等. 旱作农田沟垄覆盖集水栽培技术的试验研究. 干旱地区农业研究, 1994,12(1):74-78.
[12] Bu L D, Liu J L, Zhu L, et al. Attainable yield achieved for plastic film-mulched maize in response to nitrogen deficit. European Journal of Agronomy, 2014,55(2):53-62.
[13] 姚刚, 张胜, 王圣瑞, 等. 地膜覆盖对春玉米光合性能和干物质累积的影响. 内蒙古农业大学学报(自然科学版), 2000,21:153-156.
[14] 曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展. 应用与环境生物学报, 2003,9(1):103-109.
[15] 蒋锐, 郭升, 马德帝. 旱地雨养农业覆膜体系及其土壤生态环境效应. 中国生态农业学报, 2018,26(3):317-328.
[16] 李尚中, 王勇, 樊廷录, 等. 旱地玉米不同覆膜方式的水温及增产效应. 中国农业科学, 2010,43(5):922-931.
[17] 鲁向晖, 高鹏, 王飞, 等. 宁夏南部山区秸秆覆盖对春玉米水分利用及产量的影响. 土壤通报, 2008,39(6):1248-1251.
[18] 赵海祯, 梁哲军, 齐宏立, 等. 旱地小麦覆盖栽培高产机理研究. 干旱地区农业研究, 2002,20(2):1-4.
[19] 柴岩, 万富世. 中国小杂粮产业发展报告. 北京: 中国农业科学技术出版社, 2007: 3-5.
[20] 郭琦. 中国糜子(Panicum miliaceum L.)种质资源遗传多样性分析. 晋中:山西农业大学, 2013.
[21] 董孔军, 杨天育, 何继红. 甘肃省糜子地方资源农艺性状遗传多样性分析. 河北农业科学, 2012,6(2):1-3,14.
[22] 吴旭东, 张晓娟, 谢应忠, 等. 不同种植年限紫花苜蓿人工草地土壤有机碳及土壤酶活性垂直分布特征. 草业学报, 2013,22(1):245-251.
[23] 侯慧芝, 吕军峰, 郭天文, 等. 西北黄土高原半干旱区全膜覆土穴播对土壤水热环境和小麦产量的影响. 生态学报, 2014,34(19):5503-5513.
[24] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业出版社, 2000.
[25] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986: 125.
[26] Dong B D, Liu M Y, Jiang J W. Growth,grain yield and water use efficiency of rain-fed spring hybrid millet (Setaria italica) in plastic-mulched and unmulched fields. Agricultural Water Management, 2014,143(9):93-101.
[27] 乔治军. 糜子产业发展现状与思路. 作物杂志, 2013(5):25-27.
[28] 王创云, 邓妍, 赵丽, 等. 不同覆膜栽培方式对玉米光合特性及产量形成的影响. 中国农学通报, 2015,31(30):62-67.
[29] 徐星凯, 周礼恺, Oswald V C. 脲酶抑制剂/硝化抑制剂对土壤中尿素氮转化及形态分布的影响. 土壤学报, 2000,37(3):339-345.
[30] 高彦萍, 胡新元, 李掌, 等. 高寒阴湿区不同覆膜马铃薯微型薯的土壤水热效应及产量表现. 核农学报, 2017,31(12):2426-2433.
[31] 宋松柏, 蔡焕杰. 旱区生态环境质量的综合定量评价模型. 生态学报, 2004,24(11):2509-2515.
[32] 张帆, 王晨冰, 赵秀梅, 等. 果园垄膜覆盖对土壤微生物量碳氮及土壤呼吸的影响. 核农学报, 2018,32(7):1448-1455.
[1] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[2] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[3] Liu Hongjie, Ren Dechao, Ge Jun, Zhang Suyu, Lü Guohua, He Xun. Effects of Accumulated Temperature and Planting Density on Pre-Winter Growth of Wheat [J]. Crops, 2024, 40(1): 141-147.
[4] Yang Yanming, Zhou Yi, Zhang Zijian, Zhao Yang, Li Yajian, Pang Yaqi, Wang Yaxun, Han Wenyu, Liu Jinghui. Effects of Humic Acid and Different Tillage Measures on Carbon Pool and Microbial Community Structure in Saline Alkali Soil [J]. Crops, 2024, 40(1): 157-165.
[5] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[6] Yu Huawei, Zhu Shijiang, Sun Aihua, Li Hu, Zhong Yun, Ye Xiaosi, Hua Xin, Zhang Tao, Liu Changlin. Experimental Study on Nitrogen Leaching Loss from Paddy Soil Solution for Different Irrigation Modes Based on Biochar [J]. Crops, 2024, 40(1): 214-219.
[7] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
[8] Xie Keran, Gao Ti, Cui Kehui. Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature [J]. Crops, 2024, 40(1): 8-15.
[9] Xie Hao, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Yang Jianchang, Gu Junfei. Analysis of Nitrogen Use Efficiency of Base Fertilizer of Rice under Different Crop Management Practices by Using 15N Labeling [J]. Crops, 2024, 40(1): 90-96.
[10] Wang Hongbo, Tang Maosong, Li Guohui, GaoYang , Wang Xingpeng. Construction and Evaluation of Cotton Yield Model Based on Logistic Model for Filmless Drip Irrigation in Southern Xinjiang [J]. Crops, 2024, 40(1): 97-103.
[11] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[12] Ao Jincheng, Wang Zheng, Yang Qigang, Li Zhi, Wei Jianyu. Response of Soil Bacterial Community Structure and Functional Diversity to Flue-Cured Tobacco Continuous Cropping [J]. Crops, 2023, 39(6): 127-134.
[13] Zhou Xu, He Xiaolei, Cao Liang, Li Duo, Fu Chenye, Zhang Mingcong, Zhang Yuxian, Wang Mengxue. Effects of Different Water Stress and Rehydration at Seedling Stage on Antioxidant Properties and Yield of Soybean [J]. Crops, 2023, 39(6): 135-142.
[14] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[15] Chen Jinping, Pan Liping, Xing Ying, Liao Qing, Liu Yongxian, Che Jianglü. Study on the Effects of Exogenous Jasmonic Acid on Selenium Tolerance and Selenium Accumulation in Pak Choi (Brassica chinensis L.) [J]. Crops, 2023, 39(6): 160-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!