Crops ›› 2022, Vol. 38 ›› Issue (4): 193-198.doi: 10.16035/j.issn.1001-7283.2022.04.027

;

Previous Articles     Next Articles

Effects of Different New Type Fertilizers on Wheat Photosynthetic Characteristics, Canopy Structure and Yield

Yu Guoyi1(), Kong Lingcong2, Zhang Liang1, Wei Zhi2, Wang Yongjiu1, Wang Zhi2, Du Xiangbei2()   

  1. 1Anhui Wanken Seed Industry Company Limited, Hefei 230061, Anhui, China
    2Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China
  • Received:2021-04-12 Revised:2021-07-19 Online:2022-08-15 Published:2022-08-22
  • Contact: Du Xiangbei E-mail:417519709@126.com;duxiangbei@126.com

Abstract:

In order to clarify the effects of different new fertilizers and provide a basis for reasonable fertilizer selection in production. The experiment was carried out in Longkang Farm, Huaiyuan County, Anhui province, using the wheat variety Yannong 19 as the material. A total of seven different fertilizer treatments were setted: common fertilizers, maintenance fertilizers, active synergistic fertilizers, activated carbon fertilizers, active plain fertilizers, soil conditioners + conventional fertilization and conventional fertilization. Different fertilizer treatments were investigated for their effects on wheat canopy structure, light interception, flag leaf photosynthetic properties, yield, and its components. The results showed that compared to the conventional fertilization treatment, the new type fertilizer treatments enhanced wheat yield by 4.4%-10.2%, with the active synergistic fertilizer treatment having the highest yield. Compared with the conventional fertilization treatment, the new fertilizer treatments enhanced the wheat flag leaf SPAD, net photosynthetic rate, canopy LAI, and light interception. Finally, the novel fertilizer have the benefit of improving wheat productivity and fertilizer efficiency, and particularly the activated synergistic fertilizer may be employed as the ideal scheme for scientific wheat fertilization under production settings.

Key words: New type fertilizer, Wheat, Yield, Canopy structure

Table 1

Effects of different fertilizer treatments on grain yield and its components and biomass of wheat"

生长季
Growing
season
处理
Treatment
穗粒数
Grains number
per spike
千粒重
1000-grain
weight (g)
穗数
Spike density
(×104/hm2)
产量
Yield
(kg/hm2)
生物量
Biomass
(kg/hm2)
2018-2019 普通化肥 35.8b 43.1a 480.2b 7 323.6c 16 908.1c
保持肥 38.1a 44.2a 507.3a 8 483.8ab 19 682.4ab
活性增效肥 38.5a 45.0a 505.5ab 8 711.2a 20 149.7a
活性炭肥 37.6ab 43.1a 496.5ab 8 091.9b 18 794.3b
活性素肥 37.5ab 44.3a 504.6ab 8 320.1ab 19 416.5ab
土壤改良剂+习惯施肥 37.5ab 44.6a 507.8a 8 304.5ab 19 306.3ab
习惯施肥 36.6ab 43.7a 493.9ab 7 816.7b 18 204.1c
变异系数CV (%) 2.43 1.66 2.01 5.66 5.73
2019-2020 普通化肥 35.6b 42.7a 479.1b 7 148.5c 16 574.6c
保持肥 38.3a 43.5a 496.5a 8 151.6ab 18 911.7ab
活性增效肥 38.6a 43.4a 504.8a 8 477.5a 19 783.6a
活性炭肥 37.7ab 43.8a 495.6a 8 195.3ab 19 013.1a
活性素肥 37.6ab 43.7a 496.5a 8 209.2ab 19 287.2a
土壤改良剂+习惯施肥 37.6ab 43.1a 499.2a 8 023.3ab 18 614.1b
习惯施肥 36.7ab 43.0a 492.4ab 7 778.9b 18 146.8b
变异系数CV (%) 2.74 0.92 1.60 5.37 5.57

Table 2

Effects of different fertilizer treatments on LAI of wheat"

生长季
Growing season
处理
Treatment
拔节期
Jointing stage
孕穗期
Booting stage
开花期
Anthesis
花后20d
20 days after anthesis
2018-2019 普通化肥 3.40a 5.93b 6.64b 2.08c
保持肥 3.20a 6.16ab 6.96ab 2.87ab
活性增效肥 3.44a 6.24a 7.08a 2.95a
活性炭肥 3.52a 6.20a 6.84b 2.79ab
活性素肥 3.44a 6.15ab 6.66b 2.95a
土壤改良剂+习惯施肥 3.28a 6.33a 6.95ab 2.87ab
习惯施肥 3.28a 6.28a 6.72b 2.71b
2019-2020 普通化肥 3.28a 5.43b 6.14b 1.95c
保持肥 3.04a 5.92a 6.48ab 2.62b
活性增效肥 3.20a 5.96a 6.60a 2.87a
活性炭肥 3.28a 5.88a 6.44ab 2.62b
活性素肥 3.04a 5.79a 6.36ab 2.71a
土壤改良剂+习惯施肥 3.28a 5.82a 6.48ab 2.79a
习惯施肥 3.04a 5.53b 6.28ab 2.54b

Table 3

Effects of different fertilizer treatments on canopy light interception rates of wheat %"

生长季
Growing season
处理
Treatment
起身期
Rising stage
拔节期
Jointing stage
孕穗期
Booting stage
开花期
Anthesis
花后20d
20 days after anthesis
2018-2019 普通化肥 78.9a 95.6a 85.6b 60.1b 31.6c
保持肥 80.7a 97.8a 89.6ab 67.9ab 45.3ab
活性增效肥 81.6a 98.1a 94.3a 73.7a 48.7a
活性炭肥 79.8a 96.9a 91.8a 68.9ab 43.1ab
活性素肥 82.1a 98.4a 92.4a 70.5a 47.4a
土壤改良剂+习惯施肥 81.4a 95.6a 89.9ab 66.4ab 46.5ab
习惯施肥 78.7a 96.4a 89.3ab 64.6ab 42.4b
2019-2020 普通化肥 68.8a 93.9a 84.6a 59.3b 29.7c
保持肥 70.9a 96.9a 86.5a 64.0a 36.8ab
活性增效肥 77.4a 99.1a 89.3a 65.5a 40.9a
活性炭肥 76.5a 97.4a 88.6a 63.4a 37.6ab
活性素肥 75.8a 96.4a 87.9a 63.1a 36.9ab
土壤改良剂+习惯施肥 74.6a 98.2a 86.0a 64.3a 35.5ab
习惯施肥 71.6a 94.2a 86.4a 65.2a 33.6b

Table 4

Effects of different fertilizer treatments on flag leaf SPAD of wheat"

生长季Growing season 处理Treatment 孕穗期Booting stage 开花期Anthesis 花后20d 20 days after anthesis
2018-2019 普通化肥 49.9b 54.3b 39.5c
保持肥 54.5a 59.8a 46.4ab
活性增效肥 52.6a 59.9a 48.5a
活性炭肥 51.2ab 56.8b 45.7b
活性素肥 55.0a 58.2ab 43.6b
土壤改良剂+习惯施肥 53.1ab 58.5ab 46.2ab
习惯施肥 49.7b 56.1b 41.1bc
2019-2020 普通化肥 50.9b 48.7b 38.2c
保持肥 53.6a 56.5a 46.2a
活性增效肥 55.3a 58.6a 47.7a
活性炭肥 55.1a 58.9a 48.6a
活性素肥 53.6a 56.6a 46.7a
土壤改良剂+习惯施肥 53.7a 59.4a 45.3a
习惯施肥 48.5c 50.9b 42.1b

Table 5

Effects of different fertilizer treatments on flag leaf Pn of wheat μmol CO2/(m2·s)"

生长季
Growing
season
处理
Treatment
开花期
Anthesis
花后20d
20 days after
anthesis
2018-2019 普通化肥 23.9b 10.6b
保持肥 27.6a 12.3a
活性增效肥 27.0a 12.0a
活性炭肥 26.6a 11.9a
活性素肥 27.3a 12.3a
土壤改良剂+习惯施肥 27.2a 12.1a
习惯施肥 25.1ab 10.4b
2019-2020 普通化肥 23.0b 9.5b
保持肥 24.8ab 10.8a
活性增效肥 25.9a 10.6a
活性炭肥 25.3a 11.3a
活性素肥 24.6ab 10.6a
土壤改良剂+习惯施肥 25.9a 11.7a
习惯施肥 22.7b 9.0b

Table 6

Correlation coefficients between canopy photosynthetic characteristics and wheat yield components"

指标Index 穗粒数
Grains number per spike
千粒重
1000-grain weight
穗数
Spike number
产量
Yield
生物量
Biomass
平均光能截获率Mean canopy light interception 0.626* 0.819** 0.810** 0.804** 0.789**
平均叶面积指数Mean leaf area index 0.631* 0.778** 0.803** 0.766** 0.743**
旗叶平均SPAD值Mean flag leaf SPAD 0.858** 0.622* 0.827** 0.898** 0.888**
旗叶平均Pn Mean flag leaf Pn 0.659* 0.724** 0.804** 0.754** 0.729**
[1] Tao F, Yokozawa M, Xu Y, et al. Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agricultural and Forest Meteorology, 2006, 138:82-92.
doi: 10.1016/j.agrformet.2006.03.014
[2] 张丽英, 张正斌, 徐萍, 等. 黄淮小麦农艺性状进化及对产量性状调控机理的分析. 中国农业科学, 2014, 47(5):1013-1028.
[3] 胡鹏. 活性糖肽肥对水稻产量及经济效益的影响. 现代农业科技, 2019(14): 18,20.
[4] 陈清, 张强, 常瑞雪, 等. 我国水溶性肥料产业发展趋势与挑战. 植物营养与肥料学报, 2017, 23(6):1642-1650.
[5] 张健, 李燕婷, 袁亮, 等. 氨基酸发酵尾液可促进樱桃番茄对水溶肥料氮素的吸收利用. 植物营养与肥料学报, 2018, 24(1):114-121.
[6] 阚正荣, 濮超, 祁剑英, 等. 施用生物炭对华北平原冬小麦土壤水分和籽粒产量的影响. 中国农业大学学报, 2019, 24(4):1-10.
[7] 郑学博, 崔键, 马超, 等. 施肥措施对砂姜黑土小麦生长性状、营养元素累积及产量的影响. 中国生态农业学报, 2012, 20(5):550-555.
[8] 吴小宾, 谭德水, 木海涛, 等. 冬小麦一次性施肥氮肥产品筛选与产量效应. 中国农业科学, 2018, 51(20):3863-3875.
[9] 王飞, 徐梦彬, 周娜娜, 等. 不同氮肥运筹对晚播小麦农艺性状、产量及品质的影响. 山东农业科学, 2018, 50(12):59-63.
[10] 吴子峰, 刘倩倩, 郑良勇, 等. 不同类型新型肥料对冬小麦产量和氮素利用率的影响. 安徽农业科学, 2020, 48(3):167-170.
[11] Feng J F, Li F B, Deng A X, et al. Integrated assessment of the impact of enhanced-efficiency nitrogen fertilizer on N2O emission and crop yield. Agriculture,Ecosystems and Environment, 2016, 231:218-228.
doi: 10.1016/j.agee.2016.06.038
[12] Gaju O, Reynolds M P, Sparkes D L, et al. Relationships between physiological traits,grain number and yield potential in a wheat DH population of large spike phenotype. Field Crops Research, 2014, 164:126-135.
doi: 10.1016/j.fcr.2014.05.015
[13] Lindquist J L, Arkebauer T G, Walters D T, et al. Maize radiation use efficiency under optimal growth conditions. Agronomy Journal, 2005, 97:72-78.
doi: 10.2134/agronj2005.0072
[14] 于淑芳, 杨力, 张民, 等. 控释肥对小麦玉米生物学性状和土壤硝酸盐积累的影响. 农业环境科学学报, 2010, 29(1):128-133.
[15] 何杰, 张敬昇, 王昌全, 等. 包膜控释氮肥配施尿素对冬小麦产量与氮素积累及利用的影响. 西北农林科技大学学报(自然科学版), 2018, 46(3):34-42.
[16] 杜祥备, 王家宝, 刘小平, 等. 减氮运筹对甘薯光合作用和叶绿素荧光特性的影响. 应用生态学报, 2019, 30(4):1253-1260.
[17] 张志明. 氨化腐植酸增效肥料的研制与应用. 腐植酸, 2011(5):45-48.
[18] 乔俊, 赵建国, 解谦, 等. 纳米炭材料对作物生长影响的研究进展. 农业工程学报, 2017, 33(2):162-170.
[19] 刘键, 张阳德, 张志明. 纳米增效肥对冬小麦产量及品质影响的研究. 安徽农业科学, 2008, 36(35):15578-15580.
[20] 刘键, 张阳德, 张志明. 纳米生物技术在水稻、玉米、大豆增产效益上的应用研究. 安徽农业科学, 2008, 36(36):15814-15816.
[21] 梁华东, 何迅, 巩细民, 等. 我国新型肥料的现状及发展. 化肥工业, 2015, 42(5):1-3,39.
[1] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[2] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[3] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[4] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[5] Li Zujun, Jiang Xue, Yang Tonglian, Wu Chaoxin, Zhang Xichun, Jiang Xuehai, Long Wuhua, Zhang Yushan, Zhu Susong. Effects of Different Fertilizer Ratios on Yield and Taste Quality of Guizhouhe Goudang No.1 [J]. Crops, 2022, 38(4): 160-166.
[6] Ma Ke, Feng Lei, Zhao Xiatong, Zhang Liguang, Yuan Xiangyang, Dong Shuqi, Guo Pingyi, Song Xi’e. Effects of Sowing Distance and Sowing Amount on the Growth Characteristics and Yield of Zhangzagu 10 [J]. Crops, 2022, 38(4): 172-178.
[7] Zhao Shifeng, Cao Lixia, Shi Bihong, Liu Wenting, Zhao Xuefeng, Liu Junxin, Zhang Lixia, Li Jiahao. Dry Matter Accumulation and Productivity Potential Evaluation of Main Forage Oat Varieties in China [J]. Crops, 2022, 38(4): 179-186.
[8] Zhou Jihong, Wang Junying, Meng Fanyu, Tong Guoxiang, Mei Li, Liu Guoming, Wang Yan, Luo Jun, Xie Chunyuan. Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat [J]. Crops, 2022, 38(4): 199-204.
[9] Zhou Wuxian, Li Mengge, Tan Xuhui, Wang Youyuan, Wang Hua, Jiang Xiaogang, Duan Yuanyuan, Zhang Meide. Effects of Sowing Density on Growth, Nutritional Quality and Soil Enzyme Activity of Pinellia ternata in Different Seasons [J]. Crops, 2022, 38(4): 205-213.
[10] Qiao Yujia, Wei Ling, Xiao Junhong, Liu Bo, Yang Haifeng, Duan Xueyan. Analysis on the Yield Differences of Huanghuaihai Summer Soybeans in Different Years and Locations [J]. Crops, 2022, 38(4): 221-226.
[11] Liang Weiqin, Jia Li, Guo Liming, Li Yinglan, Hu Yafeng, Chen Xiaohua, Ma Xufeng, Li Jing. Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat [J]. Crops, 2022, 38(4): 242-248.
[12] Zheng Minna, Liang Xiuzhi, Kang Jiahui, Li Yinfan, Wang Hui, Han Zhishun, Chen Yanni. Effects of Different Nitrogen Application Rates on Photosynthetic Characteristics and Nitrogen Photosynthetic Utilization Efficiency of Fed Oats [J]. Crops, 2022, 38(4): 249-254.
[13] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
[14] Wang Xiaochun, Zhu Dexin, Yang Tianhui, Wang Chuan, Yang Weidi, Gao Ting, Liang Xiaojun. Correlation Analysis of Main Agronomic Characteristics of Different Alfalfa Varieties and Comparison of Hay Yield in Yellow River Irrigation Area of Ningxia [J]. Crops, 2022, 38(4): 32-36.
[15] Jian Juntao, Wang Qinghua, Yang Hui, Liu Jun, Zhu Chuanjie, Li Yupeng, Zhang Bin, Zhang Zhen, Quan Honglei, Xie Yanzhou, Wang Chengshe. Utilization of New Wheat Varieties (Lines) from Southern Huanghuai in Nanyang Basin-Transitional Ecological Area [J]. Crops, 2022, 38(4): 46-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!