Crops ›› 2022, Vol. 38 ›› Issue (5): 130-134.doi: 10.16035/j.issn.1001-7283.2022.05.018

Previous Articles     Next Articles

Effects of Row Spacing and Seedling Belt Width on Dry Matter Accumulation and Distribution of Wheat in Wide Refined Sowing

Sun Yunchao1(), Peng Keyan2, Feng Shengye1, Ji Chuanyun1, Lü peng2, Ju Zhengchun2()   

  1. 1Liaocheng Academy of Agricultural Sciences, Liaocheng 252000, Shandong, China
    2Shandong Agricultural Technology Extension Center, Ji’nan 250100, Shandong, China
  • Received:2021-05-06 Revised:2021-08-04 Online:2022-10-15 Published:2022-10-19

Abstract:

In order to enrich the mechanisms of wide refined sowing and yield increase in wheat, we researched the effects of three row spacings (20, 25, 30cm) and five seedling belt widths (3, 6, 9, 12, 15cm) on accumulation and distribution of dry matter after anthesis. The results showed that the suitable row spacing and seedling belt width could increase yield. When the seedling belt width was less than 9cm, yield increased with the increase of the width, while when the seedling belt width was more than 9cm, yield decreased with the increase of the width. The maximum yield was obtained with row spacing of 25cm and seedling belt width of 9cm. The fastest period of dry matter accumulation of grain was from 21 to 28 days after anthesis, and the fastest period of dry matter transformation of the aboveground part of wheat was from 14 to 28 days after anthesis. The increase of row spacing and seedling belt width increased the accumulation of group dry matter of each vegetative organ, but when row spacing was more than 25cm and seedling belt width was more than 9cm, the transportation of dry matter from vegetative organs to grains was inhibited.

Key words: Wheat, Wide refined sowing, Row spacing, Seedling belt width, Dry matter accumulation, Dry matter distribution

Table 1

Wheat grain yield and its components in different row spacing and seedling belt width"

行距
Row spacing
(cm)
幅宽
Seedling belt
width (cm)
单株分蘖成穗数
Mature ear of tillering
number per plant
穗数
Spike number
(×104/hm2)
穗粒数
Grains per
spike
千粒重
1000-grain
weight (g)
产量
Yield
(kg/hm2)
容重
Unit weight
(g/L)
20 3 2.30i 475.03k 28.20h 45.25d 7159.95j 813.00b
6 3.80f 490.05j 29.60fg 46.08cd 6847.50k 813.00b
9 3.70g 549.00h 30.10f 47.25b 7535.25i 814.00b
12 4.00e 619.29d 33.20d 45.25d 8000.40f 805.00e
15 4.00e 610.00de 36.30b 44.95de 7902.15g 795.00h
25 3 2.20j 608.05e 29.20g 44.64e 7153.20j 806.00de
6 3.80f 614.04d 30.60e 46.51c 8379.90d 807.00d
9 4.20c 710.04a 32.60d 49.66a 8929.50a 813.00b
12 4.30b 629.05c 35.40c 48.44a 8648.95b 818.00a
15 4.40a 668.05b 37.20a 46.73c 8444.85d 795.00h
30 3 2.70h 513.38i 30.10f 43.85f 6840.60l 799.00g
6 3.80f 580.04g 32.50d 46.08c 7778.10h 803.00f
9 4.10d 601.71f 37.20a 46.95bc 8608.65c 810.00c
12 4.10d 633.38c 37.20a 46.30cd 8634.30bc 803.00f
15 4.20c 663.52b 37.10ab 44.39ef 8230.95e 800.00g

Fig.1

The effects of different seedling belt widths on dry matter accumulation of wheat seed in different row spacings"

Fig.2

The effects of different seedling belt widths on aboveground dry matter accumulation in different row spacings"

Table 2

Dry matter translocation at pre-anthesis of vegetative organs of wheat"

行距
Row spacing
(cm)
幅宽
Seedling belt
width (cm)
叶片Leaf 茎秆Stem 穗轴+颖壳Rachis+glume
TAPA
(kg/hm2)
TRPA
(%)
TCPA
(%)
TAPA
(kg/hm2)
TRPA
(%)
TCPA
(%)
TAPA
(kg/hm2)
TRPA
(%)
TCPA
(%)
20 3 487.75n 34.27 6.81 1884.45hi 34.16 26.32 113.97n 8.31 1.59
6 617.25lm 30.09 9.01 1912.87gh 29.32 27.94 233.18l 14.57 3.41
9 1027.01h 39.98 13.63 1934.22g 27.15 25.67 340.09i 17.29 4.51
12 1133.16de 40.34 14.16 2174.09d 27.31 27.17 430.28f 19.32 5.38
15 1253.14c 41.50 15.86 2280.56b 27.32 28.86 539.53c 21.93 6.83
25 3 841.41i 49.00 11.76 1939.72g 34.21 27.12 326.55j 23.49 4.57
6 727.68k 34.21 8.68 2094.19e 30.09 24.99 456.39e 23.91 5.45
9 1114.57e 40.72 12.48 2005.17f 25.97 22.46 370.58g 19.41 4.15
12 1400.46b 47.58 16.19 2242.48c 26.34 25.93 512.22d 23.44 5.92
15 1642.22a 52.33 19.45 2375.02a 27.08 28.12 645.64a 27.14 7.65
30 3 735.54j 40.36 10.75 1552.21k 26.51 22.69 193.29m 12.46 2.83
6 627.88l 29.94 8.07 1899.18h 29.51 24.42 317.52k 18.37 4.08
9 1079.35g 40.38 12.54 1426.48l 17.43 16.57 346.51hi 16.08 4.03
12 1198.24d 40.23 13.88 1624.79j 18.48 18.82 573.29b 24.57 6.64
15 1097.37fg 35.51 13.33 1761.77i 18.02 21.40 526.78cd 21.00 6.40
[1] 赵海波, 于凯, 曲日涛, 等. 宽幅精播对冬小麦群体动态和产量的影响. 农业科技通讯, 2012(6):42-45.
[2] 董庆裕. 冬小麦宽幅精播高产栽培技术. 山东科技报, 2011-09-30(2).
[3] Ye Y, Wang G, Huang Y, et al. Understanding physiological processes associated with yield-trait relationships in modern wheat varieties. Field Crops Research, 2011, 124(3):316-322.
doi: 10.1016/j.fcr.2011.06.023
[4] 牟会荣, 姜东, 戴廷波, 等. 遮荫对小麦旗叶光合及叶绿素荧光特性的影响. 中国农业科学, 2008, 41(2):599-606.
[5] 屈会娟, 李金才, 沈学善, 等. 种植密度和播期对冬小麦品种兰考矮早八干物质和氮素积累与转运的影响. 作物学报, 2009, 35(1):124-131.
[6] 马东云, 郭天财, 王晨阳, 等. 施氮量对冬小麦灌浆期光合产物积累、转运及分配的影响. 作物学报, 2008, 34(6):1027-1033.
[7] 王月福, 于振文, 李尚霞, 等. 土壤肥力与施氮量对小麦氮素吸收转运及籽粒产量和蛋白质含量的影响. 应用生态学报, 2003, 14(11):1868-1872.
[8] 孟范玉, 周吉红, 王俊英, 等. 2BJK-8型小麦宽幅精量播种机在北京地区适宜行距研究. 农业科技通讯, 2015(4):88-90.
[9] 李世莹, 冯伟, 王永华, 等. 宽幅播种带间距对冬小麦冠层特征及产量的影响. 植物生态学报, 2013, 37(8):758-767.
doi: 10.3724/SP.J.1258.2013.00079
[10] 冯荣成, 郭爱芳, 朱晓玲, 等. 小麦宽幅精播不同播量对群体动态和产量的影响. 河南科技学院学报(自然科学版), 2013, 41(2):6-8.
[11] 王奎良, 赵海波, 胡乐奇, 等. 宽幅精播对冬小麦光合特性和产量影响的研究. 农业科技通讯, 2012(9):60-62.
[12] 殷复伟, 王文鑫, 谷淑波, 等. 株行距配置对宽幅播种小麦产量形成的影响. 麦类作物学报, 2018, 38(6):710-717.
[13] 李世莹, 王永华, 冯伟, 等. 宽幅带播对大穗型冬小麦冠层特征及产量的影响. 麦类作物学报, 2013, 33(2):320-324.
[14] 段剑钊, 李世莹, 郭彬彬, 等. 宽幅播种对冬小麦群体质量及产量的影响. 核农学报, 2015, 29(10):2013-2019.
doi: 10.11869/j.issn.100-8551.2015.10.2013
[15] 党伟, 马超, 赵强, 等. 宽幅精播对小麦产量及产量构成因素的影响. 河北农业科学, 2015, 19(2):15-17.
[16] 李世莹, 冯伟, 王永华, 等. 宽幅播种带间距对冬小麦冠层特征及产量的影响. 植物生态学报, 2013, 37(8):758-767.
doi: 10.3724/SP.J.1258.2013.00079
[17] 李朝霞, 赵世杰, 孟庆伟, 等. 高粒叶比小麦群体生理基础研究进展. 麦类作物学报, 2002, 22(4):79-83.
[18] 邵敏敏, 黄玲, 徐兴科, 等. 不同行距与幅宽互作对宽幅精播小麦产量形成的影响. 山东农业科学, 2019, 51(4):30-34.
[19] 王玉杰, 王永华, 韩磊, 等. 不同栽培管理模式对冬小麦花后干物质积累与分配特征及产量的影响. 麦类作物学报, 2011, 31(5):894-900.
[20] 吴祯, 张保军, 海江波, 等. 不同种植方式对冬小麦花后干物质积累与分配特征及产量的影响. 麦类作物学报, 2017, 37(10):1377-1382.
[1] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[2] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[3] Hui Chao, Yang Weijun, Deng Tianchi, Chen Yuxin, Song Shilong, Zhang Jinshan, Shi Shubing. Effects of Biochar Dosage on Accumulation and Transport of Dry Matter and Nitrogen and Yield of Spring Wheat in Irrigated Area [J]. Crops, 2022, 38(6): 201-207.
[4] Shen Wenyuan, Chen Xinyu, Yu Xurun, Wu Yunfei, Chen Gang, Xiong Fei. Advance of Effects of Rhizosphere Temperature Stress on Morphology and Physiology of Wheat Root [J]. Crops, 2022, 38(6): 23-32.
[5] Wang Junzhen, Zhou Meiliang, Li Faliang, Zhang Kaixuan, Zhu Jianfeng, Shen A’yi, Luogu Youfu, Yao Juhong, Yin Yuanjie, Wu Dongming, Zhang Jie. Breeding and Cultivation Technology of New Tartary Buckwheat Variety “Chuanqiao 6” [J]. Crops, 2022, 38(6): 241-244.
[6] Zhu Qidi, Li Yanyan, Lu Meng, Lin Shengzhe, Yu Chengqiang, Liu Ke. Analysis of Wheat Kernel Quality and Morphological Characteristics at Different Spikelet Positions [J]. Crops, 2022, 38(6): 88-92.
[7] Li Yanlu, Wang Junpeng, Yu Xinzhi, Wei Honglei, Chen Qiyu, Zhao Hongxiang, Xu Chen, Bian Shaofeng, Zhang Zhian. Effects of Mulching Different Plastic Films on Accumulation and Distribution of Dry Matter and Nitrogen in Maize in Cold and Cool Areas [J]. Crops, 2022, 38(5): 124-129.
[8] Wang Yan, Li Tingyou, Wang Dou, Li Jiawei, Peng Wenlu, Rui Haiyun. Effects of Isosteviol on Growth of Wheat Seedlings under Salt Stress [J]. Crops, 2022, 38(5): 141-145.
[9] Chang Haigang, Li Guang, Yuan Jianyu, Xie Mingjun, Qi Xiaoping. Effects of Different Fertilization Methods on Soil Nutrients and Yield of Spring Wheat in the Loess Hilly Region of Central Gansu Province [J]. Crops, 2022, 38(5): 160-166.
[10] Ge Changbin, Qin Suyan, Huang Jie, Cao Yanyan, Liao Pingʼan. Effects of Tillage Methods on Fusarium Head Blight and Yield of Wheat [J]. Crops, 2022, 38(5): 235-240.
[11] Li Rui, Dong Liqiang, Shang Wenqi, Yu Guangxing, Dai Guijin, Wang Zheng, Li Yuedong. Effects of Water Spraying Interval at Seedling Stage on Growth and Yield of Rice [J]. Crops, 2022, 38(5): 249-254.
[12] Li Ning, Liu Tongtong, Yang Jinwen, Shi Yugang, Wang Shuguang, Sun Daizhen. Analysis of Physiological Differences of Wheat Varieties with Different Nitrogen Use Efficiency [J]. Crops, 2022, 38(5): 87-96.
[13] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[14] Yu Guoyi, Kong Lingcong, Zhang Liang, Wei Zhi, Wang Yongjiu, Wang Zhi, Du Xiangbei. Effects of Different New Type Fertilizers on Wheat Photosynthetic Characteristics, Canopy Structure and Yield [J]. Crops, 2022, 38(4): 193-198.
[15] Zhou Jihong, Wang Junying, Meng Fanyu, Tong Guoxiang, Mei Li, Liu Guoming, Wang Yan, Luo Jun, Xie Chunyuan. Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat [J]. Crops, 2022, 38(4): 199-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia[J]. Crops, 2018, 34(4): 149 -153 .
[2] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years[J]. Crops, 2018, 34(4): 32 -36 .
[3] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[4] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin[J]. Crops, 2018, 34(4): 8 -12 .
[5] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties[J]. Crops, 2018, 34(4): 79 -83 .
[6] Yan Zhang,Cui Yin,Yun’e Cao. Effects of Earthworm Fermentation Broth on Fruit and Vegetables Quality[J]. Crops, 2018, 34(1): 102 -106 .
[7] Shaohui Huang,Yunma Yang,Ketong Liu,Junfang Yang,Suli Xing,Yanming Sun,Liangliang Jia. Effects of Different Fertilization Method on Wheat Yield and Fertilizer Contribution Rate in Hebei Province[J]. Crops, 2018, 34(1): 113 -117 .
[8] Zhimin Du,Yuchen Yang,Yuanye Xia,Yanlong Gong,Zhiqiang Yan,Hai Xu. Effects of Harvest Time on Quality Traits of Hybrid Japonica Rice and Inbred Japonica Rice in Northern China[J]. Crops, 2018, 34(1): 147 -151 .
[9] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines)[J]. Crops, 2018, 34(1): 77 -82 .
[10] Kai Zhu,Fei Zhang,Fulai Ke,Yanqiu Wang,Jianqiu Zou. Effects of Planting Density on Yield and Physiological Characteristics of Sorghum Hybrids Suitable for Mechenization[J]. Crops, 2018, 34(1): 83 -87 .