Crops ›› 2023, Vol. 39 ›› Issue (4): 44-51.doi: 10.16035/j.issn.1001-7283.2023.04.007

Previous Articles     Next Articles

Molecular Cloning and Functional Identification of Resistance Gene FtTIR of Tartary Buckwheat to Blight

Chen Yuanyuan1,2(), Li Guangsheng2,3, Liu Yang2,4, He Yuqi2, Zhou Meiliang2(), Fang Zhengwu1   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3College of Life Science and Health, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
    4College of Agronomy and Biotechnology, Southwest University, Chongqing 400700, China
  • Received:2022-07-21 Revised:2022-09-15 Online:2023-08-15 Published:2023-08-15

Abstract:

Using tartary buckwheat “Pinku-1” as material, the FtTIR gene was cloned and studied for its expression pattern during the infection of Rhizoctonia solani and its role in the resistance signaling pathway against the disease. The results showed that the full length of the FtTIR gene was 576bp, encoding 191 amino acids, and the protein molecular weight was 22.7kDa. Evolutionary analysis showed that the FtTIR protein was closely related to Chenopodium quinoa XP_021726625.1 and Vigna angularis XP_047164412.1. qRT-PCR results showed that the FtTIR gene was induced by R.solani infection and the expression level was the highest in stems. In transgenic Arabidopsis, the overexpression of FtTIR gene significantly improved plant resistance to R.solani and increased the activities of peroxidase and superoxide dismutase in leaves, as well as the expression level of the disease-related gene AtPR1.

Key words: Tartary buckwheat, FtTIR, Overexpression, Resistance to blight

Table 1

Summary of primer sequence"

引物Primer 引物序列(5′-3′)Primer sequence (5′-3′) 用途Function
FtTIR-F ATGCAACGTCCAGTAGCCAAA 基因克隆
FtTIR-R TTATTTGCTGTTTTCTTCAACCTCG
FtTIR-qPCR-F GCCTTCTTGCTAATGGG qRT-PCR
FtTIR-qPCR-R GCTTACAACAACACCTCC
AtPR1-qPCR-F TCATGGCTAAGTTTGCTTCC
AtPR1-qPCR-R AATACACACGATTTAGCACC
FtH3-qPCR-F GAAATTCGCAAGTACCAGAAGAG qRT-PCR内参基因
FtH3-qPCR-R CCAACAAGGTATGCCTCAGC
Atactin7-qPCR-F TCCATGAAACAACTTACAACTCCATCA
Atactin7-qPCR-R CATCGTACTCACTCTTTGAAATCCACA
121-FtTIR-F GAGAACACGGGGGACTCTAGAATGCAACGTCCAGTAGCCAAA 构建过表达载体
121-FtTIR-R CATACCTCCTCCTCCGGATCCTTTGCTGTTTTCTTCAACCTCG
121F TGACGTAAGGGATGACGCAC pBI121通用引物

Fig.1

Sequence amplification of FtTIR gene intartary buckwheat M: DL2000; 1: the PCR amplification target band of FtTIR gene"

Fig.2

Bioinformatics analysis of FtTIR gene (a) Multiple alignment of FtTIR with other plant TIR proteins; (b) The secondary structure prediction of FtTIR protein:α-helix (blue), extended strand (red), β-turn (green), random coil (purple); (c) Thetertiary structure prediction of FtTIR protein; (d) Phylogenetic tree analysis of FtTIR protein"

Fig.3

Expression patterns of FtTIR genes in different organs of tartary buckwheat under infestation with R.solani “*”indicates significantly different at the 0.05 level, the same below"

Fig.4

Phenotypic verification of disease resistance in transgenic Arabidopsis Control: no treatment; WT: wild-type Arabidopsis; FtTIR-OE: overexpression of FtTIR in Arabidopsis. The same below"

Fig.5

DAB staining for resistance of transgenic Arabidopsis"

Fig.6

Analysis of expression patterns in transgenic Arabidopsis WT: Untreated wild type leaves; WT-RS: Wild-type leaves infected by R.solani; OE: Untreated FtTIR overexpressed Arabidopsis leaves; OE-RS: Overexpressed Arabidopsis leaves infected by R.solani. The same below"

Fig.7

Analysis of biochemical indices in transgenic Arabidopsis"

[1] 闫佳, 刘雅琼, 侯岁稳. 植物抗病蛋白研究进展. 植物学报, 2018, 53(2):250-263.
doi: 10.11983/CBB17148
[2] 高玉霞. 植物病原与抗病基因的进化研究. 南京:南京师范大学, 2018.
[3] 许凤, 杨秀梅, 张丽芳, 等. 观赏植物抗病育种研究进展. 江苏农业科学, 2021, 49(7):44-51.
[4] 尹玲, 方辉, 黄羽, 等. 植物TIR-NB-LRR类型抗病基因各结构域的研究进展. 广西植物, 2017, 37(2):186-190.
[5] Van G C, Esmenjaud D. TNL genes in peach: insights into the post-LRR domain. BMC Genomics, 2016, 30(17):317.
[6] 董亚萍, 杨仕梅, 赵德刚, 等. 烟草TIR-NBS基因家族的生物信息学分析. 广西植物, 2020, 40(6):891-900.
[7] 柴亚茹, 丁一娟, 周思钰, 等. HIGS-SsCCS转基因拟南芥的菌核病抗性鉴定. 中国农业科学, 2020, 53(4):761-770.
doi: 10.3864/j.issn.0578-1752.2020.04.008
[8] Bernoux M, Burdett H, Williams S J, et al. Comparative analysis of the flax immune receptors L6 and L 7 suggests an equilibrium-based switch activation model. The Plant Cell, 2016, 28(1):146-159.
doi: 10.1105/tpc.15.00303 pmid: 26744216
[9] Dinesh-Kumar S P, Tham W H, Baker B J.Structure-function analysis of the tobacco mosaic virus resistance gene N. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(26):14789-14794.
[10] Schreiber K J, Bentham A, Williams S J, et al. Multiple domain associations within the Arabidopsis immune receptor RPP 1 regulate the activation of programmed cell death. PLoS Pathogens, 2016, 12(7):e1005769.
doi: 10.1371/journal.ppat.1005769
[11] Zhang Y, Dorey S, Swiderski M, et al. Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. The Plant Journal, 2004, 40(2):213-224.
doi: 10.1111/tpj.2004.40.issue-2
[12] 唐宇, 邵继荣, 周美亮. 中国荞麦属植物分类学的修订. 植物遗传资源学报, 2019, 20(3):646-653.
doi: 10.13430/j.cnki.jpgr.20181210001
[13] 罗吉. 荞麦立枯病生防菌的筛选鉴定及生防效果初探. 成都:成都大学, 2021.
[14] 齐杨菊, 陈振江, 李振霞, 等. 荞麦病害研究进展. 草业科学, 2020, 37(1):75-86.
[15] 卢文洁, 李春花, 王艳青, 等. 荞麦轮纹病抗性鉴定方法的建立及荞麦抗病种质资源的筛选. 中国农学通报, 2017, 33(12):98-102.
doi: 10.11924/j.issn.1000-6850.casb16120120
[16] Gassmann W, Hinsch M E, Staskawicz B J. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. The Plant Journal, 1999, 20(3):265-277.
doi: 10.1046/j.1365-313X.1999.t01-1-00600.x
[17] Subedi S, Dhami N B, Gurung S B, et al. Assessment of disease resistance and high yielding traits of common buckwheat genotypes in subtropical climate of Nepal. SAARC Journal of Agriculture, 2020, 18(1):143-152.
doi: 10.3329/sja.v18i1.48388
[18] 徐琴琴, 陈卫良, 毛碧增. 立枯丝核菌毒素的研究进展. 核农学报, 2020, 34(10):2219-2225.
doi: 10.11869/j.issn.100-8551.2020.10.2219
[19] Ade J, DeYoung B J, Golstein C, et al. Indirect activation of a plant nucleotide binding site: leucine-rich repeat protein by a bacterial protease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(7):2531-2536.
[20] Michael W L, Swiderski M R, Li Y, et al. The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. The Plant Journal, 2006, 47(6):829-840.
doi: 10.1111/tpj.2006.47.issue-6
[21] Bernoux M, Ve T, Williams S, et al. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host & Microbe, 2011, 9(3):200-211.
[22] 尹秀娟, 涂怡, 刘昱. TLR与PI3K-Akt通路交互调控的研究进展. 生物化工, 2022, 8(2):124-130.
[23] Tao Y, Yuan F, Leister R T, et al. Mutational analysis of the Arabidopsis nucleotide binding site: leucine-rich repeat resistance gene RPS2. The Plant Cell, 2000, 12(12):2541-2554.
[24] Kawchuk L M, Martin R R, Mcpherson J. Resistance in transgenic potato expressing the potato leafroll virus coat protein gene. Molecular Plant-Microbe Interactions, 1990, 3(5):301-307.
doi: 10.1094/MPMI-3-301
[25] Hwang C F, Bhakta A V, Truesdell G M, et al. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. The Plant Cell, 2000, 12(8):1319-1329.
doi: 10.1105/tpc.12.8.1319
[1] Bai Kaihong, Abie Xiaobing, Xu Xiaoli, Jiang Na, Li Jianqiang, Luo Laixin. Analysis of Fungal Diversity in Seeds of Tartary Buckwheat from Liangshan, Sichuan Province [J]. Crops, 2023, 39(3): 260-266.
[2] Li Guangsheng, Lu Xiang, Lai Dili, Zhang Kaixuan, Wang Haihua, Zhou Meiliang. Molecular Cloning and Functional Analysis of Resistance Gene FtABCG12 of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(3): 43-50.
[3] Wang Junzhen, Zhou Meiliang, Li Faliang, Zhang Kaixuan, Zhu Jianfeng, Shen A’yi, Luogu Youfu, Yao Juhong, Yin Yuanjie, Wu Dongming, Zhang Jie. Breeding and Cultivation Technology of New Tartary Buckwheat Variety “Chuanqiao 6” [J]. Crops, 2022, 38(6): 241-244.
[4] Shi Xian, Li Hongyou, Lu Bingyue, Zhou Yun, Zhao Jiju, Zhao Mengli, Liang Jing, Meng Hengling. Physiological Responses of Three Tartary Buckwheat Varieties to Salt Stress and Evaluation of Salt Tolerance [J]. Crops, 2022, 38(3): 149-154.
[5] Yin Guifang, Duan Ying, Yang Xiaolin, Cai Suyun, Wang Yanqing, Lu Wenjie, Sun Daowang, He Runli, Wang Lihua. Cloning and Bioinformatics Analysis of FtC4H Gene from Tartary Buckwheat [J]. Crops, 2022, 38(1): 77-83.
[6] Weng Wenfeng, Wu Xiaofang, Zhang Kaixuan, Tang Yu, Jiang Yan, Ruan Jingjun, Zhou Meiliang. The Overexpression of FtbZIP5 Improves Accumulation of Flavonoid in the Hairy Roots of Tartary Buckwheat and Its Salt Tolerance [J]. Crops, 2021, 37(4): 1-9.
[7] Jia Ruiling, Zhao Xiaoqin, Nan Ming, Chen Fu, Liu Yanming, Wei Liping, Liu Junxiu, Ma Ning. Genetic Diversity Analysis and Comprehensive Assessment of Agronomic Traits of 64 Tartary Buckwheat Germplasms [J]. Crops, 2021, 37(3): 19-27.
[8] Jin Jiangang, Tian Zaifang. Grey Correlation Analysis of Introduced Tartary Buckwheat in the Northern Shanxi [J]. Crops, 2021, 37(2): 52-56.
[9] Ma Mingchuan, Liu Longlong, Liu Zhang, Zhou Jianping, Nan Chenghu, Zhang Lijun. Analysis of SSR Loci in Whole Genome and Development of Molecular Markers in Tartary Buckwheat [J]. Crops, 2021, 37(1): 38-46.
[10] Lu Xiaoling, He Ming, Zhang Kaixuan, Liao Zhiyong, Zhou Meiliang. Study on the Cloning and Transformation of Rhamnose Transferase FtF3GT1 Gene in Tartary Buckwheat [J]. Crops, 2020, 36(5): 33-40.
[11] Yang Xuele, Zhang Lu, Li Zhiqing, He Luqiu. Diversity Analysis of Tartary Buckwheat Germplasms Based on Phenotypic Traits [J]. Crops, 2020, 36(5): 53-58.
[12] Li Chunhua, Huang Jinliang, Yin Guifang, Wang Yanqing, Lu Wenjie, Sun Daowang, Wang Chunlong, Guo Laichun, Hong Bo, Ren Changzhong, Wang Lihua. Genetic Analysis of Grain Shape Related Traits in Tartary Buckwheat [J]. Crops, 2020, 36(3): 42-46.
[13] Chengrui Ma,Dabing Xiang,Yan Wan,Jianyong Ouyang,Yue Song,Zhengsong Tang,Jianying Liu,Gang Zhao. Difference Analysis of Spatial Distribution Characteristics of Different Tartary Buckwheat Varieties [J]. Crops, 2020, 36(1): 35-40.
[14] Yang Tian,Zhang Yongqing,Dong Fuhui,Ma Xingxing,Xue Xiaojiao. Research on the Root Growth of Different Drought-Resistant Fagopyrum tataricum under Different Water Conditions [J]. Crops, 2019, 35(6): 76-82.
[15] Song Lifang,Feng Meichen,Zhang Meijun,Xiao Lujie,Wang Chao,Yang Wude,Song Xiaoyan. Effects of Exogenous Selenium on the Growth and Development of Tartary Buckwheat and Selenium Content in Grains [J]. Crops, 2019, 35(3): 150-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!