Crops ›› 2024, Vol. 40 ›› Issue (1): 214-219.doi: 10.16035/j.issn.1001-7283.2024.01.028

;

Previous Articles     Next Articles

Experimental Study on Nitrogen Leaching Loss from Paddy Soil Solution for Different Irrigation Modes Based on Biochar

Yu Huawei1(), Zhu Shijiang1,2, Sun Aihua1,2(), Li Hu1,2, Zhong Yun1,2, Ye Xiaosi1, Hua Xin1, Zhang Tao3, Liu Changlin3   

  1. 1College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China
    2Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, Yichang 443002, Hubei, China
    3Dongfeng Canal Irrigation District Management Station of Yichang, Yichang 443002, Hubei, China
  • Received:2022-09-28 Revised:2022-10-23 Online:2024-02-15 Published:2024-02-20
  • Contact: Sun Aihua E-mail:1850752780@qq.com;511373960@qq.com

Abstract:

To explore the effects of biochar application on nitrogen leaching in paddy soil under different water management modes, three biochar application levels (B0: without biochar application, B1: biochar/soil was 2%, B2: biochar/soil was 4%) and three water management modes (W1: conventional water management, W2: mild water deficit, W3: severe water deficit) were set up in the experiment. Three years field experiment was conducted to analyze the leaching law of soil nitrogen in different treatments. The results showed that the variation trend of NH4+ concentration in paddy soil under different water management modes was similar, and reached the maximum on the 35th day after tillering. Under the same biochar application level, the degree of water deficit was negatively correlated with the cumulative leaching of NH4+ and NO3-. The more water lacks, the smaller the cumulative leaching of nitrogen ions in paddy soil. Under the condition of B1 treatment, the cumulative leaching loss of NH4+ and NO3- in W3 water management mode was 26.87% and 22.40% lower than that in W1. Under the condition of B2 treatment, the cumulative leaching loss of NH4+ and NO3- in W3 water management mode were 21.09% and 18.27%, lower than that in W1, respectively. Under the same biochar application level, the nitrogen leaching amount of paddy soil decreased with the increase of water deficit.

Key words: Biochar, Water management, Paddy soil, Nitrogen leaching loss, Water-saving irrigation

Table 1

Different treatment combinations"

处理
Treatment
生物炭施加量
Biochar application amount
水分管理模式
Moisture management mode
T1 B0 (0%) W1
T2 B1 (2%) W1
T3 B2 (4%) W1
T4 B0 (0%) W2
T5 B1 (2%) W2
T6 B2 (4%) W2
T7 B0 (0%) W3
T8 B1 (2%) W3
T9 B2 (4%) W3

Fig.1

Dynamic change processes of NH4+ and NO3- concentrations and cumulative leaching loss in soil solution without biochar application"

Fig.2

Dynamic change processes of NH4+and NO3- concentrations and cumulative leaching loss in biochar soil solution at B1 level"

Fig.3

Dynamic change process of NH4+and NO3- concentrations and cumulative leaching loss in biochar soil solution at B2 level"

[1] 中华人民共和国国家统计局.中国统计年鉴2022. 北京: 中国统计出版社, 2022.
[2] 李俊峰, 杨建昌. 水分与氮素及其互作对水稻产量和水肥利用效率的影响研究进展. 中国水稻科学, 2017, 31(3):327-334.
doi: 10.16819/j.1001-7216.2017.6078 327
[3] 李帅, 卫琦, 徐俊增, 等. 水肥一体化条件下控灌稻田土壤氮素及水稻生长特性研究. 灌溉排水学报, 2021, 40(10):79-86.
[4] Bouman B A M, Peng S, Castaneda A R, et al. Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, 2004, 74(2):87-105.
doi: 10.1016/j.agwat.2004.11.007
[5] Haefele S M, Jabbar S M A, Siopongco J D L C, et al. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels. Field Crops Research, 2008, 107(2):137-142.
doi: 10.1016/j.fcr.2008.01.007
[6] 曹小闯, 李晓艳, 朱练峰, 等. 水分管理调控水稻氮素利用研究进展. 生态学报, 2016, 36(13):3882-3890.
[7] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5):915-924.
[8] 赵常, 耿爱军, 张姬, 等. 水肥药精准管理技术研究现状与发展趋势. 中国农机化学报, 2018, 39(11):28-33.
[9] Yu Q G, Ye J, Yang S N, et al. Effects of nitrogen application level on rice nutrient uptake and ammonia volatilization. Rice Science, 2013, 20(2):139-147.
doi: 10.1016/S1672-6308(13)60117-1
[10] 彭世彰, 杨士红, 徐俊增. 节水灌溉稻田氨挥发损失及影响因素. 农业工程学报, 2009, 25(8):35-39.
[11] 张燕, 江建锋, 黄奇娜, 等. 水分管理调控水稻镉污染的研究与应用进展. 中国稻米, 2021, 27(3):10-16.
doi: 10.3969/j.issn.1006-8082.2021.03.003
[12] 张作合, 张忠学. 水炭运筹对寒地黑土区稻田土壤肥料氮素残留的影响. 农业机械学报, 2020, 51(1):284-294.
[13] 袁晶晶, 齐学斌, 赵京, 等. 生物炭配施沼液对土壤团聚体及其有机碳分布的影响. 灌溉排水学报, 2022, 41(1):80-86.
[14] 王洪媛, 盖霞普, 翟丽梅, 等. 生物炭对土壤氮循环的影响研究进展. 生态学报, 2016, 36(19):5998-6011.
[15] 斯林林. 生物炭配施化肥对稻田养分利用及流失的影响. 杭州:浙江大学, 2018.
[16] 王萌萌, 周启星. 生物炭的土壤环境效应及其机制研究. 环境化学, 2013, 32(5):768-780.
[17] 刘悦, 黎子涵, 邹博, 等. 生物炭影响作物生长及其与化肥混施的增效机制研究进展. 应用生态学报, 2017, 28(3):1030-1038.
doi: 10.13287/j.1001-9332.201703.035
[18] 李谦维, 高俊琴, 梁金凤, 等. 生物炭添加对不同水氮条件下芦苇生长和氮素吸收的影响. 生态学报, 2021, 41(10):3765-3774.
[19] 俞映倞, 薛利红, 杨林章, 等. 生物炭添加对酸化土壤中小白菜氮素利用的影响. 土壤学报, 2015, 52(4):759-767.
[20] Ullah S, Dahlawi S, Naeem A, et al. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of the Total Environment, 2017, 625:320.
doi: 10.1016/j.scitotenv.2017.12.257
[21] 王凡, 屈忠义, 李昌见, 等. 生物炭对砂壤土氮素淋失的影响试验研究. 灌溉排水学报, 2017, 36(7):71-74.
[22] Qi L, Zhang Y H, Liu B J, et al. How does biochar influence soil N cycle? A meta-analysis. Plant and Soil, 2018, 426:211-225.
doi: 10.1007/s11104-018-3619-4
[23] 朱启林, 刘丽君, 张雪彬, 等. 生物炭和秸秆添加对海南热带水稻土氮素淋溶的影响. 水土保持学报, 2021, 35(4):193-199.
[24] 陈庆华, 许卓, 汤计超, 等. 生物炭对土壤氮磷流失和油菜产量的影响. 中国农业科技导报, 2019, 21(11):130-137.
doi: 10.13304/j.nykjdb.2018.0585
[25] 李飞跃, 谢越, 石磊, 等. 稻壳生物质炭对水中氨氮的吸附. 环境工程学报, 2015, 9(3):1221-1226.
[26] 张军, 周丹丹, 吴敏, 等. 生物炭对土壤硝化反硝化微生物群落的影响研究进展. 应用与环境生物报, 2018, 24(5):993-999.
[27] 徐文, 冯雅婷, 朱士江, 等. 水分调控及生物炭对柑橘土壤和叶片养分的影响. 排灌机械工程学报, 2023, 41(9):966-972.
[1] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[2] Liu Hui, Long Xueyi, Jiao Yan, Wang Lihong. Effects of Combined Application of Biochar and Phosphate Fertilizer on Rice Growth and Yield [J]. Crops, 2023, 39(5): 238-248.
[3] Wu Yan, Liu Kailou, Zhang Jingyun, Song Huijie, Hu Dandan. Improvement Effects of Soybean Meal and Its Biochar on Acid Paddy Soil and Yield of Rice [J]. Crops, 2023, 39(3): 200-204.
[4] Wang Yuan, Wang Jiming, Nian Fuzhao, Zheng Yuanxian, Xu Yinlian, Li Cuifen, Cui Yongquan, Zhang Qifu, Zhao Leifeng, Liao Xiaolin, He Yuansheng. Effects of Continuous Cropping with Rice Hull Biochar on Soil Physical and Chemical Properties and Growth of Flue-Cured Tobacco [J]. Crops, 2023, 39(1): 219-225.
[5] Zhang Mingfa, Zhang Sheng, Teng Kai, Chen Qianfeng, Tian Minghui, Jiang Zhimin, Chao Jin, Jian Panfeng, Deng Xiaohua. Effects of Fertilizing with Straw Biochar on Soil pH and Root Growth of Flue-Cured Tobacco in Huayuan, Hunan [J]. Crops, 2022, 38(6): 193-200.
[6] Hui Chao, Yang Weijun, Deng Tianchi, Chen Yuxin, Song Shilong, Zhang Jinshan, Shi Shubing. Effects of Biochar Dosage on Accumulation and Transport of Dry Matter and Nitrogen and Yield of Spring Wheat in Irrigated Area [J]. Crops, 2022, 38(6): 201-207.
[7] Dong Linlin, Shen Mingxing, Shi Linlin, Shen Yuan, Wang Haihou, Lu Changying. The Effects of Biochar Combined with Earthworm Cast Application on Rice Yield and Nutrient Uptake [J]. Crops, 2022, 38(5): 69-77.
[8] Du Fu, Xia Maolin, Liu Xinyuan, Yu Zhaojin, Zhang Zhan, Liu Yunfei, Ji Xiaoming. Effective Effects of Acrylamide/Carboxymethyl Cellulose/Biochar Composite Hydrogel on Cadmium Stress in Tobacco Seedlings [J]. Crops, 2022, 38(4): 138-145.
[9] Guo Shuya, Shang Shang, Tang Qining, Zhang Yan, Lu Guangyuan. Effects of Different Rotation Tillage Methods and Biochar on Soil Enzyme Activity, Soil Nutrients and Yield of Wheat and Maize [J]. Crops, 2022, 38(3): 211-217.
[10] Cheng Dayu, Liu Kun, Gao Jie, Zhang Xingyu, Gu Xi, Liu Lijun. Research Progress on the Effects of Nutrient and Water Management on Rice Fragrance [J]. Crops, 2022, 38(2): 22-27.
[11] Gao Jia, Wang Jiao, Wang Song, Liu Hongjian, Kang Jia, Shen Hong, Wang Haili, Ren Shaoyong. Effects of Biochar-Based Fertilizer on Soil Urease Activity and Yield of Potato [J]. Crops, 2021, 37(6): 134-138.
[12] Xue Jingfang, Cai Yongsheng, Chen Shuqiang. Effects of Water-Saving Irrigation Cultivation Model on Rice Quality and Starch RVA Profiles [J]. Crops, 2021, 37(4): 86-92.
[13] Wang Kun, Wei Yuewei, Ji Xiaoming, Yun Fei, Zou Kai, Long Zhun. Effects of Combined Application of Biochar-Based Fertilizer and Trichoderma harzianum on the Qualities of Flue-Cured Tobacco and Tobacco-Growing Soil [J]. Crops, 2021, 37(3): 106-113.
[14] Zhao Jun, Sun Mingyue, Gao Xiang, Zhao Chengjuan, Cui Siping, Zhou Baoyuan, Guo Dong, Ma Wei. Application of the New Negative Pressure Irrigation Technology for Accurate Regulation Farmland Soil Moisture [J]. Crops, 2020, 36(6): 175-179.
[15] Liu Meiju,Li Jiangzhou,Ji Sigui,Fan Miaomiao,Gu Xinghui,Zhang Limeng,Zhang Jinwei,Qu Xing,Zhou Wenbing,Lin Shan. Evaluation of Effect of Biochar on Tobacco Yield and Nitrogen Use Efficiency in Mountain Slope Areas [J]. Crops, 2020, 36(1): 89-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!