Crops ›› 2024, Vol. 40 ›› Issue (2): 80-88.doi: 10.16035/j.issn.1001-7283.2024.02.010

Previous Articles     Next Articles

Effects of Straw Returning Years and Phosphorus Application on Root Growth and Yield of Maize

Hu Haochi(), Wang Fugui(), Zhu Kongyan, Hu Shuping, Wang Meng, Wang Zhigang, Sun Jiying, Yu Xiaofang, Bao Haizhu(), Gao Julin()   

  1. Agricultural College of Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
  • Received:2023-01-29 Revised:2023-03-30 Online:2024-04-15 Published:2024-04-15

Abstract:

Xianyu 335 was used as the test material in this experiment, and a two-factor split-plot design was used to study the effects of straw returning years [5 years (5a) and 1 year of total straw deep ploughing (1a)] and phosphorus application levels [P2O5 0 (P0), 45 (P45), 90 (P90), 135 (P135) and 180 kg/ha (P180)] on root architecture, mycorrhizal colonization, plant dry weight, phosphorus accumulation and final yield of maize. The results showed that compared with 1a, 5a significantly optimized the root morphology of maize, promoted root growth, mycorrhizal infection and plant dry matter and phosphorus accumulation, and then increased the yield by 1.94%-7.15%. The level of phosphorus fertilizer affected the growth and development of maize, and also affected the mycorrhizal colonization density (m%), arbuscular richness (a%) and root arbuscular richness (A%), and these indexes began to decrease significantly after P90 treatment, indicating that when the phosphorus level was high, the infection of AM fungi would be seriously inhibited. The dry weights of roots, stalk and leaves of maize in jointing period reached the maximum at P90, P90 and P135, respectively, which increased by 1.31%-15.07%, 0.05%-25.07% and 7.61%-22.42% compared with other phosphorus treatments. The accumulation of phosphorus reached the peak at P135, P90 and P135, respectively, which increased by 11.09%-95.51%, 10.77%-77.39% and 3.91%-29.28% compared with other phosphorus treatments. The dry weight of stalk, leaves and grain of maize at mature period reached the maximum at P90, P135 and P90, respectively, and increased by 0.18%-19.25%, 5.79%-30.60% and 0.90%-10.47% compared with other phosphorus treatments. The accumulation of phosphorus reached the peak at P135, P135 and P90, which increased by 5.16%-54.70%, 13.18%-77.22% and 3.99%-56.75%, respectively, compared with other phosphorus treatments. Compared with P0, the maize yields of all P treatments increased significantly, and reached the highest at P135. In summary, when the total straw deep ploughing combined with 135 kg/ha phosphate fertilizer was applied for five consecutive years, maize had stronger nutrient absorption capacity, which could promote plant growth and significantly increase yield.

Key words: Maize, Straw returning, Phosphorus application rate, Root growth, Mycorrhizal colonization, Yield

Table 1

Analysis of variance of root morphology and root mycorrhizal infection status under straw returning years and phosphorus treatments"

变异来源
Sources of
variation
FF-value
总根长
Total root length
总根表面积
Total root surface area
总根体积
Total root volume
菌根侵染密度
(m%)
丛枝丰富度
(a%)
根系丛枝丰富度
(A%)
SRY 632.427** 147.198** 109.700** 1228.415** 121.868** 1469.118**
P 480.649** 31.032** 52.163** 336.514** 100.514** 221.513**
SRY×P 84.312** 4.337** 11.755** 104.200** 3.795* 88.872**

Table 2

Multiple comparisons of root morphology and root mycorrhizal infection among combinations"

处理
Treatment
总根长
Total root length (mm)
总根表面积
Total root surface area (cm2)
总根体积
Total root volume (cm3)
菌根侵染密度
(m%)
丛枝丰富度
(a%)
根系丛枝丰富度
(A%)
1a P0 1796.59f 542.71d 13.52f 24.70f 50.89c 13.88f
P45 1910.12e 619.22c 17.14cd 27.03de 66.58b 16.31e
P90 2912.27a 721.15b 17.49c 28.67d 69.90b 19.82c
P135 2267.34d 627.02c 16.09de 13.27g 54.43c 6.18g
P180 1804.64f 544.41d 15.92e 8.93h 40.44d 3.85h
5a P0 1901.09e 654.25c 15.46e 28.13d 69.11b 18.39d
P45 2530.34c 735.38b 19.24b 32.77c 75.33a 27.12a
P90 2980.03a 781.57a 19.50b 52.50a 77.09a 26.05ab
P135 2686.03b 816.50a 21.34a 35.77b 66.65b 25.67b
P180 2665.45b 697.71b 16.46cde 25.93ef 49.54c 18.32d

Table 3

ANOVA of root dry weight and P accumulation under straw returning years and P treatments"

变异来源
Sources of
variation
FF-value
根系干重
Root dry weight
根部磷素积累量
Phosphorus accumulation in roots
SRY 79.17** 3854.82**
P 25.69** 514.43**
SRY×P 6.10** 111.17**

Fig.1

Effects of straw returning years and phosphorus treatments on root dry weight and phosphorus accumulation “*”and“**”indicate significant (P < 0.05) and extremely significant (P < 0.01) differences between straw returning years at the same phosphorus level, the same below."

Table 4

Analysis of variance of dry weight and phosphorus accumulation of shoot organs under straw returning years and phosphorus treatments"

指标
Index
部位
Position
拔节期Jointing stage 成熟期Mature stage
SRY P SRY×P SRY P SRY×P
干重Dry weight 茎秆 171.09** 43.54** 9.18** 492.12** 64.92** 8.31**
叶片 108.76** 87.88** 8.27** 7.12* 139.58** 1.63
籽粒 122.47** 96.47** 27.76**
磷素积累量Phosphorus accumulation amount 茎秆 307.70** 150.47** 4.83** 523.44** 81.53** 24.10**
叶片 254.74** 70.11** 7.80** 120.42** 178.63** 8.84**
籽粒 513.66** 508.33** 121.69**

Fig.2

Effects of straw returning years and phosphorus treatments on dry weight and phosphorus accumulation of shoot organs"

Table 5

Analysis of variance of maize yield and its components under straw returning years and phosphorus treatments"

变异来源
Sources of
variation
FF-value
穗粒数
Grains
per ear
有效穗数
Effective
panicles
百粒重
100-grain
weight
产量
Yield
SRY 2.14 20.51** 0.01 44.53**
P 1.56 3.62* 0.84 19.25**
SRY×P 0.59 1.43 0.33 2.28

Fig.3

Effects of straw returning period and phosphorus treatment on yield and its components"

Table 6

Multiple comparisons of absorption and utilization efficiency of phosphorus among combinations in maize"

处理
Treatment
磷素吸收效率
PUPE (kg/kg)
磷素利用率
PUE (%)
磷素农学效率
PAE (kg/kg)
磷素偏生产力
PPFP (kg/kg)
1a P0
P45 0.92b 0.21b 8.20b 322.05a
P90 0.50d 0.14c 4.67cd 161.60c
P135 0.36f 0.12d 8.13b 112.74d
P180 0.22h 0.05f 2.46d 80.93e
5a P0
P45 0.97a 0.15c 5.46c 328.30a
P90 0.68c 0.27a 11.73a 173.15b
P135 0.42e 0.15c 8.87b 116.48d
P180 0.29g 0.08e 4.26cd 84.97e
[1] Yang C D, Lu S G. Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol. Science of the Total Environment, 2022, 805:150325.
doi: 10.1016/j.scitotenv.2021.150325
[2] 于博, 徐松鹤, 任琴, 等. 秸秆还田研究进展及内蒙古玉米秸秆深翻还田现状. 作物杂志, 2022(2):6-15.
[3] 霍丽丽, 赵立欣, 孟海波, 等. 中国农作物秸秆综合利用潜力研究. 农业工程学报, 2019, 35(13):218-224.
[4] 郭斗斗, 黄绍敏, 张珂珂, 等. 有机无机外源磷素长期协同使用对潮土磷素有效性的影响. 植物营养与肥料学报, 2018, 24(6):1651-1659.
[5] 高日平, 赵思华, 刁生鹏, 等. 秸秆还田对黄土风沙区土壤微生物、酶活性及作物产量的影响. 土壤通报, 2019, 50(6):1370-1377.
[6] 赵雪淞, 宋王芳, 高欣, 等. 秸秆还田和耕作方式对花生土壤微生物量、酶活性和产量的影响. 中国土壤与肥料, 2020(3):126-132.
[7] 王嘉豪, 李廷亮, 黄璐, 等. 秸秆还田替代化肥对黄土旱塬小麦产量及水肥利用的影响. 水土保持学报, 2022, 36(3):236-243,251.
[8] 侯云鹏, 王立春, 李前, 等. 覆膜滴灌条件下基于玉米产量和土壤磷素平衡的磷肥适用量研究. 中国农业科学, 2019, 52 (20):3573-3584.
doi: 10.3864/j.issn.0578-1752.2019.20.008
[9] Shen J B, Yuan L X, Zhang J L, et al. Phosphorus dynamics: from soil to plant. Plant Physiology, 2011, 156(3):997-1005.
doi: 10.1104/pp.111.175232 pmid: 21571668
[10] 曹宁, 陈新平, 张福锁, 等. 从土壤肥力变化预测中国未来磷肥需求. 土壤学报, 2007, 44(3):536-543.
[11] 陈晓影, 刘鹏, 程乙, 等. 土壤深松下磷肥施用深度对夏玉米根系分布及磷素吸收利用效率的影响. 作物学报, 2019, 45 (10):1565-1575.
doi: 10.3724/SP.J.1006.2019.93005
[12] 潘浩男, 覃潇敏, 肖靖秀, 等. 不同磷水平下间作对红壤团聚体及有效磷特征的影响. 中国土壤与肥料, 2022(4):1-8.
[13] 王艳丽, 张富仓, 李菊, 等. 灌溉和施磷对河西地区春玉米生长、产量和磷素利用的影响. 西北农业学报, 2021, 30(9):1309-1320.
[14] 张锦滨, 王晓云, 孟圆, 等. 不同磷肥用量对水稻产量效益、磷肥利用率及土壤养分的影响. 中国农学通报, 2021, 37(32):96-101.
doi: 10.11924/j.issn.1000-6850.casb2021-0671
[15] 张淑彬, 王幼珊, 殷晓芳, 等. 不同施磷水平下AM真菌发育及其对玉米氮磷吸收的影响. 植物营养与肥料学报, 2017, 23 (3):649-657.
[16] 任云, 刘静, 李哲馨, 等. 玉米幼苗响应低铁胁迫的根系形态与干物质积累特征. 作物杂志, 2020(6):69-79.
[17] 张瑞富, 杨恒山, 范秀艳, 等. 施磷深度和深松对春玉米磷素吸收与利用的影响. 植物营养与肥料学报, 2018, 24(4):880-887.
[18] 吴启华, 刘晓斌, 张淑香, 等. 施用常规磷水平的80%可实现玉米高产、磷素高效利用和土壤磷平衡. 植物营养与肥料学报, 2016, 22(6):1468-1476.
[19] Sui P X, Tian P, Lian H L, et al. Straw incorporation management affects maize grain yield through regulating nitrogen uptake, water use efficiency, and root distribution. Agronomy, 2020, 10 (3):324.
doi: 10.3390/agronomy10030324
[20] Gao F, Zhao B, Dong S T, et al. Response of maize root growth to residue management strategies. Agronomy Journal, 2017, 110 (1):95-103.
doi: 10.2134/agronj2017.06.0307
[21] Luna L, Miralles I, Andrenelli M C, et al. Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. Catena, 2016, 143:256-264.
doi: 10.1016/j.catena.2016.04.013
[22] 李胜宝, 师俊杰, 何永美, 等. 丛枝菌根真菌对蚕豆秸秆降解及玉米养分和镉铅吸收的影响. 植物营养与肥料学报, 2021, 27(4):684-694.
[23] 田磊, 石少华, 张建峰, 等. 长期化肥施用与秸秆还田对玉米根部相关AMF和细菌的群落结构多样性的影响. 土壤与作物, 2017, 6(4):291-297.
[24] 慕平, 张恩和, 王汉宁, 等. 不同年限全量玉米秸秆还田对玉米生长发育及土壤理化性状的影响. 中国生态农业学报, 2012, 20(3):291-296.
[25] Chilundo M, Joel A, Wesstrm I, et al. Response of maize root growth to irrigation and nitrogen management strategies in semi-arid loamy sandy soil. Field Crops Research, 2017, 200:143-162.
doi: 10.1016/j.fcr.2016.10.005
[26] 隋鹏祥, 张心昱, 温学发, 等. 耕作方式和秸秆还田对棕壤土壤养分和酶活性的影响. 生态学杂志, 2016, 35(8):2038-2045.
[27] Adnane B, Noyce G L, Carlsson G, et al. Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Applied Soil Ecology, 2017, 120:179-188.
doi: 10.1016/j.apsoil.2017.08.011
[28] Rast H, Liedgens M, Sangakkara U R, et al. Early growth of crotalaria (Crotalaria juncea), Tithonia (Tithonia diversifolia), and maize (Zea mays) as affected by soil fertility and phosphorus fertilizer under pot and field conditions. Communications in Soil Science and Plant Analysis, 2010, 41(14):1655-1664.
doi: 10.1080/00103624.2010.488710
[29] 杨茂秋, 冯固, 白灯莎, 等. VA菌根对玉米吸收利用磷肥的影响. 土壤肥料, 1992(4):36-41.
[30] Wang X C, Deng X Y, Pu T, et al. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research, 2017, 204:12-22.
doi: 10.1016/j.fcr.2016.12.020
[31] 战秀梅, 彭靖, 李秀龙, 等. 耕作及秸秆还田年限对春玉米产量及土壤理化性状的影响. 华北农学报, 2014, 29(3):204-209.
doi: 10.7668/hbnxb.2014.03.037
[1] Pan Yue, Li Siyu, Gao Jie, Shen Xinya, Liu Lijun. Research Progress on Effects of Straw and Its Returning Methods on Soil Properties in Paddy Fields under Different Rotation Patterns [J]. Crops, 2024, 40(2): 1-8.
[2] Wang Han, Zheng Dechao, Tian Qinqin, Wu Xiaojing, Zhou Wenxin, Yi Zhenxie. Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice [J]. Crops, 2024, 40(2): 105-112.
[3] Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121.
[4] Sun Yueying, Liu Jinghui, Mi Junzhen, Zhao Baoping, Li Yinghao, Zhu Shanshan. Study on the Growth-Promoting Effect of Lactic Acid Bacteria Compound Preparation on Oat [J]. Crops, 2024, 40(2): 122-128.
[5] Xu Zheli, Zhu Weiqi, Wang Litao, Shi Feng, Wei Zhiying, Wang Lina, Qiu Hongwei, Zhang Xiaoying, Li Huili. Effects of Irrigation and Foliar Nitrogen Application on Yield, Quality and Photosynthetic Characteristics of Late Sowing Wheat [J]. Crops, 2024, 40(2): 139-147.
[6] Xiao Min, Guo Lang, Cui Can, Cheng Zhouqi, Liu Yuwu, Zhuo Le, Wu Si, Yi Zhenxie. Effects of Phosphate Fertilizer Management on Yield Components and Nutrient Uptake and Utilization in Mechanical Transplanting Double-Cropping Rice [J]. Crops, 2024, 40(2): 178-188.
[7] Xie Mengfan, Jia Haijiang, Qu Yuankai, Nong Shiying, Li Junlin, Wang Jie, Liu Liwei, Yan Huifeng. Effects of Planting Density and Nitrogen Fertilizer Application Rate on Leaf Development and Yield of Flue-Cured Tobacco in Baise Tobacco Region [J]. Crops, 2024, 40(2): 189-197.
[8] Wang Huaiping, Yang Mingda, Zhang Suyu, Li Shuai, Guan Xiaokang, Wang Tongchao. Effects of Different Water-Saving Irrigation Modes on Growth, Yield, and Water Utilization of Summer Maize [J]. Crops, 2024, 40(2): 206-212.
[9] Zhang Lei, Dong Kongjun, He Jihong, Ren Ruiyu, Liu Tianpeng, Yang Tianyu. Study on the Difference of Nitrogen and Phosphorus Uptake of Different Genotypes of Proso Millet (Panicum miliaceum L.) Varieties [J]. Crops, 2024, 40(2): 228-233.
[10] Zhang Qian, Ren Wen, Zhao Bingbing, Zhou Miaoyi, Li Hanshuai, Liu Ya, Du Hewei. Cloning and Bioinformatics Analysis of ZmMAPKKK21 Gene in Maize [J]. Crops, 2024, 40(2): 30-39.
[11] Qin Birong, You Saiya, Chen Shurong, Zhu Lianfeng, Kong Yali, Zhu Chunquan, Tian Wenhao, Zhang Junhua, Jin Qianyu, Cao Xiaochuang, Liu Li. Effects of the Different Nitrogen Levels on Yield, Nitrogen Utilization Efficiency and the Nitrogen Balance of Double-Cropping Rice in Paddy Field [J]. Crops, 2024, 40(2): 89-96.
[12] Luo Xiaoying, Fang Yanfei, Hu Dongping, Tang Jianghua, Xu Wenxiu, Wang Huaigang. Effects of Sowing Methods and Sowing Rates on Soil Water Use and Yield of Dryland Wheat in Arid Region [J]. Crops, 2024, 40(2): 97-104.
[13] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[14] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[15] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!