Crops ›› 2022, Vol. 38 ›› Issue (5): 261-266.doi: 10.16035/j.issn.1001-7283.2022.05.038

Previous Articles    

Systemic Distribution of Flonicamid in Maize and Its Activity Effect against Rhopalosiphum maidis with Root Absorption

Zhou Chao1(), Zhang Tiantian1, Yang Li’na1, Zhang Yong1, Ma Chong1, Dai Weicheng2, Wu Cuixia1, Song Min1   

  1. 1Tai’an Academy of Agricultural Sciences, Tai’an 271000, Shandong, China
    2Plant Protection Station of Tai’an City, Tai’an 271000, Shandong, China
  • Received:2021-04-17 Revised:2021-07-26 Online:2022-10-15 Published:2022-10-19

Abstract:

Systemic distribution of flonicamid in maize and its activity evaluation against Rhopalosiphum maidis were investigated by application of hydroponic nutrient solution. The results showed that flonicamid accumulation in maize aboveground peaked 4-8 days after treatment and subsequently gradually dropped. After root-drenching, the retention of flonicamid in the root rose for 1-2 days, then remained generally steady for 2-32 days. According to the activity effect of flonicamid on R.maidis, after one day of treatment, all treatments demonstrated a certain control effect, with values ranging from 23.33% to 38.22% and honeydews substantially lower than the control group. The control effect of flonicamid on R.maidis was gradually increased with the increase of treatment time, the values of 31.25 and 125.00mg/L treatments after treated 16d were 88.60% and 99.49%, and the inhibition rates of honeydews were 96.70% and 99.95%, respectively. The honeydews of R.maidis decreased gradually with the increase of concentration, and the inhibitory rate of honeydews was higher than that of the control under the same concentration and time. Therefore, flonicamid can be used to control R.maidis through underground treatment of maize.

Key words: Flonicamid, Root absorption, Maize, Activity effect

Fig.1

Total ion chromatogram of flonicamid"

Table 1

Linear range and matrix effect of flonicamid in three matrices"

项目Item 线性方程Linear equation 相关系数Correlation coefficient (r) 基质效应Matrix effect (%)
地上部Aboveground y=47 617x+7807.9 1.0000 -26.09
根Root y=38 726x+13 974 1.0000 -39.89
营养液Nutrient solution y=59 315x+21 309 0.9999 -7.93
空白对照CK y=64 427x+8291 1.0000

Table 2

Recoveries of flonicamid in corn and nutrient solution"

项目
Item
添加浓度
Added concentration (mg/kg)
添加回收率Adding recovery (%) 平均值
Average (%)
相对标准偏差
Relative standard deviation (%)
1 2 3 4 5
地上部Aboveground 0.05 110.00 88.52 80.15 90.38 76.54 89.12 14.60
0.20 105.25 99.53 91.17 93.65 86.25 95.17 7.77
2.00 88.88 78.87 84.72 83.42 85.97 84.37 4.36
根Root 0.05 97.45 77.71 110.34 82.08 77.20 88.96 16.31
0.20 97.87 100.26 102.78 91.83 82.46 95.04 8.54
2.00 86.66 92.21 98.12 94.23 92.87 92.82 4.45
营养液Nutrient solution 0.05 109.65 92.46 88.92 103.62 89.83 96.89 9.53
0.20 103.81 100.88 97.28 95.86 92.42 98.05 4.51
2.00 100.49 97.48 96.56 100.53 105.86 100.18 3.63

Table 3

Residues of flonicamid in roots and aboveground of corn after application by root absorption and content dynamics in nutrient solution"

项目
Item
处理浓度
Concentration (mg/L)
持留量(含量)Residue (content) (mg/kg)
1d 2d 4d 8d 16d 32d
地上部Aboveground 7.81 5.89±0.52 8.87±0.55 13.45±0.95 12.75±0.69 12.05±0.54 10.78±0.66
31.25 23.12±4.03 36.68±4.38 59.40±6.49 70.50±5.36 64.95±5.12 51.72±6.50
125.00 116.39±7.75 148.38±5.00 247.62±15.18 228.80±12.19 204.74±13.53 184.53±7.43
根Root 7.81 3.33±1.19 3.68±1.13 3.88±1.22 3.44±1.08 4.00±0.98 3.62±1.02
31.25 14.75±2.33 16.35±2.34 16.20±1.64 17.38±1.85 16.42±1.56 16.78±1.62
125.00 51.40±5.33 53.95±1.97 52.53±2.68 54.82±5.14 53.89±3.54 52.94±3.84
营养液Nutrient solution 7.81 7.71±0.09 7.72±0.04 7.65±0.07 7.54±0.09 6.92±0.08 6.16±0.06
31.25 31.47±0.44 31.20±0.43 31.03±0.08 29.43±0.62 26.77±0.54 25.41±0.18
125.00 125.00±0.74 124.86±0.49 123.94±0.26 119.81±0.49 112.99±1.40 103.13±1.53

Table 4

The control effects of flonicamid and inhibitory effect on honeydew excretion to Rhopalosiphum maidis"

处理时间
Processing time
处理浓度
Concentration (mg/L)
防治效果
Control effect (%)
蜜露数(滴/头)
Honeydews (drop/ head)
蜜露抑制率
Inhibitory rate (%)
1d 7.81 23.33bA 8.99±0.41bB 33.04aA
31.25 29.47abA 8.32±0.51bBC 38.93aA
125.00 38.22aA 6.88±0.88cC 58.17aA
0.00(对照) 11.29±0.77aA
2d 7.81 35.51cC 8.08±0.51bB 49.18cC
31.25 53.89bB 4.42±0.25cC 78.95bB
125.00 71.68aA 1.82±0.55dD 95.16aA
0.00(对照) 11.23±0.51aA
4d 7.81 47.25cC 8.64±0.36bB 54.61cC
31.25 68.25bB 2.99±0.61cC 89.81bB
125.00 82.40aA 1.38±0.37dD 97.62aA
0.00(对照) 10.79±0.65aA
8d 7.81 55.18cC 7.92±0.54bB 66.00cC
31.25 85.70bB 2.79±0.49cC 95.89bB
125.00 95.53aA 1.01±0.29dD 99.59aA
0.00(对照) 11.14±0.67aA
16d 7.81 59.53cC 7.64±0.36bB 71.31cC
31.25 88.60bB 2.76±0.26cC 96.70bB
125.00 99.49aA 0.51±0.61dD 99.95aA
0.00(对照) 11.50±0.63aA
32d 7.81 56.21cC 7.96±0.59bB 68.47cC
31.25 90.98bB 2.38±0.51cC 97.90bB
125.00 100.00aA 0.00±0.00dD 100.00aA
0.00(对照) 11.79±0.64aA
[1] 中华人民共和国国家统计局. 中华人民共和国主要农作物播种面积年度数据. [2022-04-15]. http://data.stats.gov.cn/easyquery.htm?cn=C01 .
[2] 中华人民共和国国家统计局. 中华人民共和国主要农作物产品产量年度数据. [2022-04-15]. http://data.stats.gov.cn/easyquery.htm?cn=C01 .
[3] 王振营, 王晓鸣. 我国玉米病虫害发生现状、趋势与防控对策. 植物保护, 2019, 45(1):1-11.
[4] 吴玉娥, 李静, 郑坤明, 等. UPLC-HRMS法探究氯虫苯甲酰胺在水稻植株中的内吸传导特性. 农药, 2017, 56(3):176-179.
[5] Insecticide Resistance Action Committee. IRAC MoA Classification Scheme. [2021-03-11]. http://www.irac-online.org/documents/moa-classification/?ext=pdf .
[6] Alan B. Agrochemicals coming off-patent 2012-2016. London:Informa UK Ltd., 2011:94-96.
[7] 束兆林, 于居龙, 缪康, 等. 氟啶虫酰胺对水稻白背飞虱的防治效果及天敌安全性评价. 农药, 2016, 55(11):851-853.
[8] Morita M, Yoneda T, AkiyoshI N. Research and development of a novel insecticide,flonicamid. Journal of Pesticide Science, 2014, 39(3):179-180.
doi: 10.1584/jpestics.J14-05
[9] 仇是胜, 柏亚罗, 顾林玲. 氟啶虫酰胺的研究开发及市场前景. 现代农药, 2014, 13(5):6-11.
[10] 张亦冰. 新颖杀虫剂——氟啶虫酰胺. 世界农药, 2010, 32(1):54-56.
[11] Sicbaldi F, Sacchi G A, Trevisan M, et al. Root uptake and xylem translocation of pesticides from different chemical classes. Pesticide Science, 1997, 50(2):111-119.
doi: 10.1002/(SICI)1096-9063(199706)50:2<111::AID-PS573>3.0.CO;2-3
[12] 高晓旭, 张志刚, 段颖, 等. 高浓度营养液对黄瓜和番茄下胚轴徒长的抑制作用. 植物营养与肥料学报, 2014, 20(5):1234-1242.
[13] 杨焕青, 王开运, 王红艳, 等. 抗吡虫啉棉蚜种群对吡蚜酮等药剂的交互抗性及施药对其生物学特性的影响. 昆虫学报, 2009, 52(2):175-182.
[14] Hyeyoung K, Steven J. L, Lucía G A. Variability of matrix effects in liquid and gas chromatography-mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops. Journal of Chromatography A, 2012, 1270:235-245.
doi: 10.1016/j.chroma.2012.10.059 pmid: 23182936
[15] 农业部农药检定所. 农药残留试验准则:NY/T 788―2004. 北京: 中国农业出版社, 2004.
[16] 范添乐, 宋玥颐, 陈小军, 等. 农药内吸性的研究现状与改善策略. 农药学学报, 2020, 22(4):579-585.
[17] 杨庆喜, 李东阳, 纪明山, 等. 喷雾和灌根施药后吡虫啉在草莓植株中的分布及其对草莓蚜虫的防效. 植物保护, 2019, 45(4):250-254.
[18] 宗建平, 魏书娟, 王景阳, 等. 喷雾和灌根施药后吡虫啉在番茄植株中的分布及其对烟粉虱的防效. 农药学学报, 2009, 11(2):219-224.
[19] 郭东梅, 郑永权, 董丰收, 等. 油菜对吡虫啉的吸收运转与分布特性研究. 农业环境科学学报, 2006(3):606-609.
[20] 彭建红, 李耀发, 高占林, 等. 用水培法测定根部吸收的吡虫啉在小麦和棉花植株体内的持留分布动态. 农药, 2017, 56(12):901-904.
[21] 苏建亚. 氟啶虫酰胺作用靶标——内向整流钾离子通道研究进展. 农药学学报, 2019, 21(2):131-139.
[22] Cho S R, Koo H N, Yoon C, et al. Sublethal effects of flonicamid and thiamethoxam on green peach aphid,Myzus persicae and feeding behavior analysis. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54(6):889-898.
doi: 10.1007/BF03253177
[23] Ren M M, Niu J G, Hu B, et al. Block of Kir channels by flonicamid disrupts salivary and renal excretion of insect pests. Insect Biochemistry and Molecular Biology, 2018, 99:17-26.
doi: S0965-1748(18)30152-8 pmid: 29842935
[24] Powell G F, Ward D A, Prescott M C, et al. The molecular action of the novel insecticide,Pyridalyl. Insect Biochemistry and Molecular Biology, 2011, 41(7):459-469.
doi: 10.1016/j.ibmb.2011.03.007
[25] 李冠楠, 苗昌见, 李为争, 等. 吡虫啉悬浮种衣剂对玉米田节肢动物群落及主要非靶标害虫的影响. 中国农业科学, 2017, 50(24):4735-4746.
[26] 田体伟, 王丽莎, 王燕, 等. 3种新烟碱类种子处理剂对玉米及其主要害虫的影响. 河南农业科学, 2015, 44(11):73-78.
[1] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[2] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[3] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
[4] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[5] Li Long, Xiao Rang, Zhang Yongling. Effects of Combined Application of Nitrogen, Phosphorus and Potassium on Seed Maize Yield and Economic Benefit [J]. Crops, 2022, 38(5): 111-117.
[6] Li Yanlu, Wang Junpeng, Yu Xinzhi, Wei Honglei, Chen Qiyu, Zhao Hongxiang, Xu Chen, Bian Shaofeng, Zhang Zhian. Effects of Mulching Different Plastic Films on Accumulation and Distribution of Dry Matter and Nitrogen in Maize in Cold and Cool Areas [J]. Crops, 2022, 38(5): 124-129.
[7] Zhang Jianye, Du Qingzhi, Liu Xiang, Deng Jiahui, Jiao Qin, Gong Luo, Jiang Xingyin. The Effects of S-ABA on Germination and Growth of Maize under Salt-Alkali Stress [J]. Crops, 2022, 38(5): 167-173.
[8] Duan Mengran, Liu Fengze, Ge Jianrong, Yi Hongmei, Yang Hongming, Gao Yuqian, Yue Pengwu, Ma Wenyu, Ban Xiuli, Wang Fengge. Purity Identification of SSR Molecular Markers for Main Maize Varieties in Jilin Province [J]. Crops, 2022, 38(5): 34-41.
[9] Zhu Hang, Cui Fangqing, Lu Chuanli, Chen Weiwei, Li Xuhui, Lu Siqi, Zhang Xiangbo, Zhao Hua, Qi Yongwen. Analysis of Carotenoid Content in Maize Inbred Lines with Different Color Grains [J]. Crops, 2022, 38(5): 62-68.
[10] Wang Yuanyuan, Gu Zihan, Chen Pingping, Yi Zhenxie. Study on Feasibility of Seasonal Substituted Planting of Maize to Rice in Cd Contaminated Paddy Field [J]. Crops, 2022, 38(4): 187-192.
[11] Wang Jiabao, Ji Huaiyuan, Mei Jiafa, Tao Zhiguo, Shu Zhifeng, Jiang Sanqiao. The Breeding of New Maize Variety Quankeyu 900 and Its Cultivation, Seed Production Techniques [J]. Crops, 2022, 38(4): 267-270.
[12] Xu Shiying, Wang Ning, Cheng Hao, Feng Wanjun. Dynamic Changes of Seedling Traits among Maize Hybrids and Their Parents in Response to Low Nitrogen Stress [J]. Crops, 2022, 38(4): 90-98.
[13] Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199.
[14] Zhang Jun, Chen Shunquan, Zhang Wenqing, Li Gaochao, Bell. Adaptability of Ten Maize Varieties in Cameroon [J]. Crops, 2022, 38(3): 87-91.
[15] Cao Liru, Lu Xiaomin, Wang Guorui, Dang Zun, Qiu Tian, Qiu Jianjun, Tian Yunfeng, Wang Zhenhua, Dang Yongfu. Effects of Foliar Spraying with Carbon-Adsorbed Polyglutamic Acid on Growth and Development of Maize [J]. Crops, 2022, 38(2): 158-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[4] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[5] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .
[6] Wenlian Bai,Yi Zheng,Jingxiu Xiao. Below-Ground Biotic Mechanisms of Phosphorus Uptake and Utilization Improved by Cereal and Legume Intercropping-A Review[J]. Crops, 2018, 34(4): 20 -27 .
[7] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China[J]. Crops, 2018, 34(4): 42 -47 .
[8] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress[J]. Crops, 2018, 34(4): 48 -52 .
[9] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane[J]. Crops, 2018, 34(4): 53 -61 .
[10] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang[J]. Crops, 2018, 34(4): 62 -68 .