作物杂志,2024, 第2期: 71–79 doi: 10.16035/j.issn.1001-7283.2024.02.009

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同浓度外源氨基酸对水稻秧苗生长及相关生理指标的影响

刘繁超1,2(), 方淑梅1,2, 王庆燕1,2, 王晗昕1, 牛娟娟1,2, 梁喜龙1,2()   

  1. 1黑龙江八一农垦大学农学院,163319,黑龙江大庆
    2黑龙江省植物生长调节剂工程技术研究中心,163319,黑龙江大庆
  • 收稿日期:2023-03-24 修回日期:2023-04-13 出版日期:2024-04-15 发布日期:2024-04-15
  • 通讯作者: 梁喜龙,研究方向为作物化学控制原理与技术,E-mail:xilongliang@126.com
  • 作者简介:刘繁超,研究方向为作物化学调控,E-mail:2673445674@qq.com
  • 基金资助:
    黑龙江八一农垦大学博士启动金(XDB-2016-01);黑龙江八一农垦大学“三横三纵”支持计划(2018年度平台支持计划)

Effects of Different Concentrations of Exogenous Amino Acids on Growth and Related Physiological Indicators of Rice Seedlings

Liu Fanchao1,2(), Fang Shumei1,2, Wang Qingyan1,2, Wang Hanxin1, Niu Juanjuan1,2, Liang Xilong1,2()   

  1. 1College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Heilongjiang Plant Growth Regulator Engineering Technology Research Center, Daqing 163319, Heilongjiang, China
  • Received:2023-03-24 Revised:2023-04-13 Online:2024-04-15 Published:2024-04-15

摘要:

以垦粳8号为供试品种,通过温室试验,研究了不同浓度外源氨基酸(L-亮氨酸、L-天门冬氨酸、L-谷氨酸、L-精氨酸)对水稻秧苗生长及相关生理指标的影响。结果表明,添加外源亮氨酸(4 g/L)、天门冬氨酸(1.00 g/L)和谷氨酸(0.9 g/L)能够提高秧苗干物质积累量、叶绿素含量、渗透物质含量及抗氧化酶活性,降低丙二醛含量,促进秧苗根系生长,提高秧苗素质。秧苗株高分别增加55.14%、57.25%和37.90%,茎基宽分别增加10.53%、12.78%和42.85%,总干物质量分别增加66.91%、42.75%和38.66%,总叶绿素含量分别增加64.41%、20.85%和1.84%。外源精氨酸拌土处理在本研究浓度范围内可显著抑制秧苗根系生长和地下部干物质量积累。说明外源亮氨酸、天门冬氨酸和谷氨酸调控效果显著,尤其是4 g/L的外源亮氨酸作用效果突出,在今后培育高素质水稻秧苗的生产实践中可作为调控秧苗生长的技术手段。

关键词: 氨基酸, 水稻, 秧苗素质, 农艺性状, 抗逆性

Abstract:

With the test material of Kenjing 8, the effects of different exogenous amino acids (L-leucine, L-aspartic acid, L-glutamic acid, L-arginine) on rice seedlings growth and related physiological indicators were studied through greenhouse experiment. The results showed that, the addition of exogenous leucine (4 g/L), aspartic acid (1.00 g/L) and glutamic acid (0.9 g/L) could increase the accumulation of dry matter content, chlorophyll content, osmotic substance content, increase antioxidant enzyme activities and reduce malondialdehyde content, further promote root growth of seedlings, and improve the quality of seedlings. Specifically, the plant height of seedlings increased by 55.14%, 57.25% and 37.90%, respectively, the stem base width increased by 10.53%, 12.78% and 42.85%, respectively, the total dry matter mass increased by 66.91%, 42.75% and 38.66%, respectively, and the total chlorophyll content increased by 64.41%, 20.85% and 1.84%, respectively. The exogenous arginine mixed soil treatment showed that the root growth and underground dry matter accumulation of seedlings were significantly inhibited in the concentration range of seedlings. This study showed that exogenous leucine, aspartic acid and glutamic acid had significant regulatory effects. In particular, 4 g/L exogenous leucine had an outstanding effect, which could be used as a technical means to control seedling growth in production of cultivating high-quality rice seedlings.

Key words: Amino acid, Rice, Seedling quality, Agronomic traits, Resistance

表1

试验设计方案

组别
Group
处理
Treatment
浓度
Concentration (g/L)
亮氨酸Leucine L1 1
L2 2
L3 4
L4 8
天门冬氨酸Aspartic acid T1 0.25
T2 0.50
T3 1.00
T4 5.00
谷氨酸Glutamic acid G1 0.9
G2 1.8
G3 3.6
G4 7.2
精氨酸Arginine J1 0.85
J2 1.70
J3 3.40
J4 10.20
对照Control CK 0.00

表2

不同氨基酸处理对水稻秧苗农艺性状的影响

组别
Group
处理
Treatment
株高
Plant
height
(cm)
茎基宽
Stem base
width
(mm)
叶面积
Leaf
area
(cm2)
地上部
干物质量
Above ground
dry weight
(mg)
地下部
干物质量
Underground
dry weight
(mg)
根系总长度
Total root
length
(cm)
总根表面积
Total root
surface area
(cm2)
总根体积
Total root
volume
(cm3)
充实度
Fullness
(mg/cm)
生长函数
Growth
function
(mg/d)
根冠比
Root-
shoot
ratio
亮氨酸
Leucine
CK 13.80±0.95b 1.33±0.06a 0.85±0.07b 6.09±0.14b 7.36±1.09b 80.98±3.69cd 7.07±0.31b 0.05±0.002b 0.44±0.03cd 0.75±0.07c 1.21±0.15a
L1 15.69±0.67b 1.39±0.08a 1.89±0.39a 7.35±0.48b 8.35±0.15b 88.07±2.41c 7.87±0.65b 0.05±0.008b 0.47±0.01c 0.82±0.04c 1.32±0.07a
L2 16.22±1.57b 1.39±0.17a 1.53±0.19a 9.32±1.39a 9.37±0.80b 142.26±9.59a 12.15±1.40a 0.08±0.015a 0.57±0.03a 0.98±0.12b 1.02±0.05ab
L3 21.41±0.96a 1.47±0.16a 1.70±0.25a 10.65±0.47a 11.88±0.72a 125.78±10.01b 11.07±1.33a 0.08±0.012a 0.50±0.01b 1.01±0.05b 1.12±0.02a
L4 21.11±3.30a 1.48±0.17a 1.65±0.20a 9.92±1.04a 7.51±0.45b 70.97±6.11d 6.99±0.37b 0.05±0.005b 0.47±0.02bc 1.21±0.09a 0.76±0.09b
天门冬
氨酸
Aspartic
acid
CK 13.80±0.95c 1.33±0.06a 0.85±0.07c 6.09±0.14c 7.36±1.09ab 80.98±3.69b 7.07±0.31bc 0.05±0.002bc 0.44±0.03b 0.75±0.06b 1.21±0.15a
T1 18.77±2.34b 1.38±0.09a 1.75±0.10b 6.80±0.28c 5.88±0.34b 76.87±4.33b 6.55±0.20c 0.04±0.001c 0.36±0.03c 0.71±0.04b 0.86±0.02b
T2 15.37±1.36c 1.37±0.16a 2.07±0.31ab 6.87±0.29c 8.51±0.98a 86.47±7.48b 7.44±0.70b 0.05±0.003b 0.38±0.02c 0.80±0.07b 1.24±0.13a
T3 21.70±0.54a 1.50±0.11a 2.47±0.43a 9.83±0.64a 9.37±0.92a 107.23±8.89a 9.54±0.42a 0.07±0.004a 0.45±0.02b 1.01±0.08a 0.95±0.04ab
T4 14.65±1.64c 1.39±0.16a 1.67±0.30b 8.25±1.16b 6.96±0.66ab 60.03±5.95c 5.71±0.70d 0.04±0.006c 0.54±0.05a 0.85±0.10b 0.84±0.04b
谷氨酸
Glutamic
acid
CK 13.80±0.95d 1.33±0.06b 0.85±0.07c 6.09±0.14c 7.36±1.09b 80.98±3.69b 7.07±0.31b 0.05±0.002a 0.44±0.03b 0.75±0.07c 1.21±0.15a
G1 19.03±0.92c 1.90±0.17a 1.73±0.15b 8.87±0.44b 9.78±1.07a 97.94±7.40a 7.73±0.20b 0.05±0.001a 0.47±0.01b 0.86±0.05bc 1.10±0.03a
G2 21.42±0.83b 1.66±0.04a 2.74±0.32a 9.11±0.53a 6.57±0.46b 53.93±2.99c 5.01±0.50c 0.04±0.006b 0.46±0.01b 0.91±0.07b 0.72±0.03b
G3 24.11±0.92a 1.87±0.10a 2.65±0.56a 9.38±0.78a 6.45±0.66b 58.42±2.81c 5.50±0.61c 0.04±0.008ab 0.39±0.02c 0.87±0.06bc 0.69±0.03b
G4 19.24±1.46c 1.79±0.18a 2.45±0.27a 10.96±0.79a 6.24±0.39b 46.15±3.39d 5.89±2.25a 0.04±0.005ab 0.56±0.03a 1.15±0.10a 0.57±0.05c
精氨酸
Arginine
CK 13.80±0.95b 1.33±0.06cd 0.85±0.07c 6.09±0.14c 7.36±1.09a 80.98±3.69a 7.07±0.31a 0.05±0.002a 0.44±0.03c 0.75±0.07c 1.21±0.15a
J1 15.08±0.58b 1.61±0.03b 2.11±0.34b 7.54±0.44b 6.32±0.41ab 61.04±3.27b 5.69±0.45b 0.04±0.002a 0.50±0.04b 0.77±0.04bc 0.84±0.01b
J2 22.74±0.16a 1.82±0.04a 2.79±0.29a 11.97±0.69a 5.89±0.49bc 49.43±4.92c 4.81±0.28c 0.04±0.003a 0.53±0.03b 0.99±0.07a 0.49±0.02c
J3 20.32±2.73a 1.39±0.13c 3.22±0.13a 10.84±1.00a 4.89±0.53c 44.92±4.24c 4.41±0.61c 0.03±0.006a 0.53±0.03b 0.87±0.08b 0.45±0.04c
J4 10.78±1.15c 1.18±0.12d 1.04±0.32c 6.72±0.80bc 2.95±0.23d 21.01±2.60d 2.72±0.34d 0.01±0.001a 0.62±0.03a 0.54±0.05d 0.44±0.05c

图1

不同处理对水稻秧苗根系活力的影响 不同小写字母表示不同处理间差异达到显著水平(P < 0.05),下同。

表3

不同处理对水稻秧苗素质叶绿素含量的影响

组别
Group
处理
Treatment
叶绿素a含量
Chlorophyll a content (mg/g)
叶绿素b含量
Chlorophyll b content (mg/g)
叶绿素总含量
Total chlorophyll content (mg/g)
叶绿素a/b
Chlorophyll a/b
亮氨酸Leucine CK 1.30±0.02c 0.32±0.01c 1.63±0.03c 4.00±0.06a
L1 1.14±0.02c 0.32±0.01c 1.46±0.01c 3.55±0.16b
L2 1.79±0.01b 0.53±0.01b 2.32±0.01b 3.38±0.09bc
L3 2.04±0.41b 0.63±0.17b 2.68±0.59b 3.27±0.26c
L4 2.41±0.01a 0.86±0.01a 3.27±0.01a 2.79±0.02d
天门冬氨酸Aspartic acid CK 1.30±0.02b 0.32±0.01c 1.63±0.03b 4.00±0.06a
T1 1.14±0.11c 0.31±0.01c 1.46±0.13c 3.65±0.21b
T2 1.33±0.06b 0.37±0.03b 1.69±0.09b 3.63±0.11b
T3 1.54±0.06a 0.42±0.02a 1.97±0.08a 3.66±0.05b
T4 1.16±0.02c 0.32±0.01c 1.48±0.03c 3.69±1.10b
谷氨酸Glutamic acid CK 1.30±0.02bc 0.32±0.01c 1.63±0.03c 4.00±0.06a
G1 1.37±0.11bc 0.29±0.03c 1.66±0.14c 4.02±0.11a
G2 1.49±0.12b 0.41±0.05c 1.89±0.17b 3.66±0.17ab
G3 1.51±0.30b 0.56±0.14b 2.07±0.17b 2.91±1.11b
G4 2.20±0.03a 0.70±0.01a 2.90±0.03a 3.15±0.05ab
精氨酸Arginine CK 1.30±0.02d 0.32±0.01c 1.63±0.03d 4.00±0.06a
J1 0.70±0.04e 0.19±0.03d 0.89±0.07e 3.79±0.37ab
J2 2.10±0.01a 0.62±0.01a 2.72±0.01a 3.41±0.03b
J3 1.80±0.06c 0.52±0.02b 2.32±0.07c 3.48±0.08ab
J4 1.97±0.10b 0.59±0.04a 2.56±0.14b 3.32±0.08b

图2

不同处理对水稻秧苗碳代谢产物的影响

图3

不同处理对水稻秧苗保护性酶活性的影响

图4

不同处理对水稻秧苗渗透调节物质含量的影响

[1] 申春芳. 水稻栽培技术对稻米品质的影响. 世界热带农业信息, 2022(5):84-86.
[2] 李瑶, 郑殿峰, 冯乃杰, 等. 调环酸钙对盐胁迫下水稻幼苗生长及抗性生理的影响. 植物生理学报, 2021, 57(10):1897-1906.
[3] 华东理工大学有机化学教研组. 有机化学:第二版. 北京: 高等教育出版社, 2013.
[4] 王振华. 氨基酸能促进插条生根. 中国花卉盆景, 1988(1):13.
[5] 邹朝晖, 张志元, 邓钢桥, 等. 喷施外源氨基酸对水稻干重及含氮量的影响. 核农学报, 2016, 30(7):1435-1439.
doi: 10.11869/j.issn.100-8551.2016.07.1435
[6] 陈鹏, 霍天满, 夏金林, 等. 丙氨酸浸种对水稻发芽及幼苗生长和养分元素含量的影响. 安徽科技学院学报, 2022, 36(4):25-30.
[7] 姚雄, 万军, 蓝平, 等. 氮肥与多效唑配合对稻麦两熟区机插水稻秧苗生长的影响. 植物营养与肥料学报, 2009, 15(6):1364-1371.
[8] Huang M, Han S, Ao J, et al. Primary-tiller panicle number is critical to achieving high grain yields in machine-transplanted hybrid rice. Scientific Reports, 2020, 10(1):2811-2817.
doi: 10.1038/s41598-020-59751-4 pmid: 32071392
[9] 李晓蕾, 钱永德, 黄成亮, 等. 苗期氮素用量对水稻秧苗素质的影响. 江苏农业科学, 2014(3):47-50.
[10] 陈雪, 夏冰, 张思佳. 聚天门冬氨酸浸种对水稻秧苗抗逆性的影响. 中国农技推广, 2022, 38(4):49-52.
[11] 左莹. 外源添加谷氨酸提高水稻抗旱性机制. 福州: 福建农林大学, 2022.
[12] 邹朝晖, 张志元, 邓钢桥, 等. 喷施外源氨基酸对水稻干重及含氮量的影响. 核农学报, 2016, 30(7):1435-1439.
doi: 10.11869/j.issn.100-8551.2016.07.1435
[13] 梁志雄, 彭智平, 涂玉婷, 等. 氨基酸配合硼喷施对油麦菜硼营养及生长、品质的影响. 核农学报, 2020, 34(11):2587-2594.
doi: 10.11869/j.issn.100-8551.2020.11.2587
[14] 齐德强, 冯乃杰, 郑殿峰, 等. 不同复配壮秧剂对水稻机插秧根系形态及抗性生理的影响. 南方农业学报, 2019, 50(5):974-981.
[15] 安之冬. 水稻育秧基质配施化肥与生长调节剂对秧苗素质及产量的影响. 合肥: 安徽农业大学, 2021.
[16] 王晶英, 敖红, 张杰, 等. 植物生理生化实验技术与原理. 哈尔滨: 东北林业大学出版社, 2003.
[17] 胡秉芬, 黄华梨, 季元祖, 等. 分光光度法测定叶绿素含量的提取液的适宜浓度. 草业科学, 2018, 35(8):1965-1974.
[18] 张志良. 植物生理学实验指导: 第5版. 北京: 高等教育出版社, 2016.
[19] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[20] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 227:248-254.
[21] 安之冬, 管浩, 朱远芃, 等. 育秧基质配施腐植酸对水稻秧苗素质及产量的影响. 中国土壤与肥料, 2022(6):173-181.
[22] 宋胜. 聚合氨基酸、SOD模拟物及其复合物对大豆生长发育及产量品质的调控效应. 大庆: 黑龙江八一农垦大学, 2008.
[23] 牛耀芳, 宗晓波, 都韶婷, 等. 大气CO2浓度升高对植物根系形态的影响及其调控机理. 植物营养与肥料学报, 2011, 17 (1):240-246.
[24] 王艳丽, 刘国顺, 丁松爽, 等. 磷用量对烤烟根系及其与地上部关系的影响. 应用生态学报, 2015, 26(5):1440-1446.
[25] 王艳哲, 刘秀位, 孙宏勇, 等. 水氮调控对冬小麦根冠比和水分利用效率的影响研究. 中国生态农业学报, 2013, 21(3):282-289.
[26] 苑婧娴. 氨基酸对小麦幼苗生长及生理特性的影响. 南京: 南京农业大学, 2013.
[27] 褚润, 陈年来. UV-B辐射增强对芦苇光合生理及叶绿体超微结构的影响. 应用生态学报, 2017, 28(11):3515-3520.
doi: 10.13287/j.1001-9332.201711.006
[28] ALquezar B, Rodrigo M J, Zacarias L. Regulation of carotenoid biosynthesis during fruit maturation in the red-fieshed orange mutant Cara. Phytochemistry, 2008, 69(10):1997-2007.
doi: 10.1016/j.phytochem.2008.04.020
[29] 潘圣刚, 闻祥成, 田华, 等. 播种密度和壮秧剂对水稻秧苗生理特性的影响. 华南农业大学学报, 2015, 36(3):32-36.
[30] 张鹏宇, 张晓蕊, 贺如, 等. 氨基酸肥喷施次数和时期对大豆生理和产量的影响. 大豆科学, 2022, 41(5):569-579.
[31] 朱广龙, 宋成钰, 于林林, 等. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制. 作物学报, 2018, 44(11):139-150.
[32] 李成江, 谢小林, 周莲, 等. 羽毛酶解氨基酸肥对小麦根系形态及抗性酶活的影响. 中国土壤与肥料, 2022, 305(9):127-132.
[1] 季平, 刘金龙, 柳浩, 匡佳丽, 叶世河, 龙莎, 杨洪涛, 彭勃, 徐晨, 刘晓龙. 抽穗期高温胁迫对不同水稻品种产量构成和品质的影响[J]. 作物杂志, 2024, (1): 117–125
[2] 王晓蕾, 张云鹤, 牟金猛, 高大鹏, 耿艳秋, 曹译文, 卢芬, 关政闻, 邵玺文, 郭丽颖. 苏打盐碱胁迫对水稻光合特性及产量的影响[J]. 作物杂志, 2024, (1): 193–203
[3] 张璐, 李登明, 翟晓宇, 武俊英, 高世华, 赵宇飞. 燕麦刈割期农艺与品质性状差异及其与再生性能的关系[J]. 作物杂志, 2024, (1): 220–228
[4] 孙远涛, 龙文靖, 李元, 刘天朋, 赵甘霖, 丁国祥, 倪先林. 45份糯高粱种质资源主要农艺性状和SSR标记的遗传多样性分析[J]. 作物杂志, 2024, (1): 57–64
[5] 谢可冉, 高逖, 崔克辉. 高温下钾肥调控水稻产量的研究进展[J]. 作物杂志, 2024, (1): 8–15
[6] 谢昊, 薛张逸, 束晨晨, 张伟杨, 张耗, 刘立军, 王志琴, 杨建昌, 顾骏飞. 不同栽培措施下水稻基肥氮素利用率的15N示踪分析[J]. 作物杂志, 2024, (1): 90–96
[7] 曲志华, 张丽丽, 胡杨, 乔海明, 李峰, 白苇. 国外引进亚麻种质资源的农艺性状评价[J]. 作物杂志, 2023, (6): 47–53
[8] 赵锋, 包奇军, 潘永东, 柳小宁, 张华瑜, 牛小霞. 70份大麦种质资源遗传多样性评价[J]. 作物杂志, 2023, (6): 54–61
[9] 高作利, 姜帅臣, 刘雨佳, 徐智慧, 刘海峰. 适合延边地区种植的彩色水稻品种筛选[J]. 作物杂志, 2023, (6): 62–68
[10] 刘艳, 曲航, 邢月华, 王晓辉, 宫亮. 新型氮肥对水稻生长、氮肥利用率和经济效益的影响[J]. 作物杂志, 2023, (5): 110–116
[11] 杨梅, 杨卫君, 高文翠, 贾永红, 张金汕. 生物质炭与氮肥配施对灌区冬小麦干物质转运、农艺性状及产量的影响[J]. 作物杂志, 2023, (5): 138–144
[12] 胡锐, 胡香玉, 傅友强, 叶群欢, 潘俊峰, 梁开明, 李妹娟, 刘彦卓, 钟旭华. 氮肥运筹对水稻根系生长发育的影响及其与氮肥吸收利用的关系[J]. 作物杂志, 2023, (5): 179–186
[13] 刘慧, 龙学毅, 焦岩, 王丽红. 生物炭与磷肥配施对水稻生长发育及产量的影响[J]. 作物杂志, 2023, (5): 238–248
[14] 张尚沛, 杨军学, 罗世武, 王勇, 张晓娟, 程炳文. 糜子育成品种(系)农艺性状遗传变异与丰产性分析[J]. 作物杂志, 2023, (5): 37–42
[15] 葛昌斌, 秦素研, 乔冀良, 王君, 齐双丽, 卢雯瑩, 张振永. 2001-2021年豫南和江苏淮河以南审定小麦品种农艺、品质性状和病害演变对比分析[J]. 作物杂志, 2023, (5): 49–58
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!